controlnet-tile-sdxl-1.0 / guided_filter.py
xinsir's picture
Upload guided_filter.py
8a192aa verified
# -*- coding: utf-8 -*-
## @package guided_filter.core.filters
#
# Implementation of guided filter.
# * GuidedFilter: Original guided filter.
# * FastGuidedFilter: Fast version of the guided filter.
# @author tody
# @date 2015/08/26
import numpy as np
import cv2
## Convert image into float32 type.
def to32F(img):
if img.dtype == np.float32:
return img
return (1.0 / 255.0) * np.float32(img)
## Convert image into uint8 type.
def to8U(img):
if img.dtype == np.uint8:
return img
return np.clip(np.uint8(255.0 * img), 0, 255)
## Return if the input image is gray or not.
def _isGray(I):
return len(I.shape) == 2
## Return down sampled image.
# @param scale (w/s, h/s) image will be created.
# @param shape I.shape[:2]=(h, w). numpy friendly size parameter.
def _downSample(I, scale=4, shape=None):
if shape is not None:
h, w = shape
return cv2.resize(I, (w, h), interpolation=cv2.INTER_NEAREST)
h, w = I.shape[:2]
return cv2.resize(I, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_NEAREST)
## Return up sampled image.
# @param scale (w*s, h*s) image will be created.
# @param shape I.shape[:2]=(h, w). numpy friendly size parameter.
def _upSample(I, scale=2, shape=None):
if shape is not None:
h, w = shape
return cv2.resize(I, (w, h), interpolation=cv2.INTER_LINEAR)
h, w = I.shape[:2]
return cv2.resize(I, (int(w * scale), int(h * scale)), interpolation=cv2.INTER_LINEAR)
## Fast guide filter.
class FastGuidedFilter:
## Constructor.
# @param I Input guidance image. Color or gray.
# @param radius Radius of Guided Filter.
# @param epsilon Regularization term of Guided Filter.
# @param scale Down sampled scale.
def __init__(self, I, radius=5, epsilon=0.4, scale=4):
I_32F = to32F(I)
self._I = I_32F
h, w = I.shape[:2]
I_sub = _downSample(I_32F, scale)
self._I_sub = I_sub
radius = int(radius / scale)
if _isGray(I):
self._guided_filter = GuidedFilterGray(I_sub, radius, epsilon)
else:
self._guided_filter = GuidedFilterColor(I_sub, radius, epsilon)
## Apply filter for the input image.
# @param p Input image for the filtering.
def filter(self, p):
p_32F = to32F(p)
shape_original = p.shape[:2]
p_sub = _downSample(p_32F, shape=self._I_sub.shape[:2])
if _isGray(p_sub):
return self._filterGray(p_sub, shape_original)
cs = p.shape[2]
q = np.array(p_32F)
for ci in range(cs):
q[:, :, ci] = self._filterGray(p_sub[:, :, ci], shape_original)
return to8U(q)
def _filterGray(self, p_sub, shape_original):
ab_sub = self._guided_filter._computeCoefficients(p_sub)
ab = [_upSample(abi, shape=shape_original) for abi in ab_sub]
return self._guided_filter._computeOutput(ab, self._I)
## Guide filter.
class GuidedFilter:
## Constructor.
# @param I Input guidance image. Color or gray.
# @param radius Radius of Guided Filter.
# @param epsilon Regularization term of Guided Filter.
def __init__(self, I, radius=5, epsilon=0.4):
I_32F = to32F(I)
if _isGray(I):
self._guided_filter = GuidedFilterGray(I_32F, radius, epsilon)
else:
self._guided_filter = GuidedFilterColor(I_32F, radius, epsilon)
## Apply filter for the input image.
# @param p Input image for the filtering.
def filter(self, p):
return to8U(self._guided_filter.filter(p))
## Common parts of guided filter.
#
# This class is used by guided_filter class. GuidedFilterGray and GuidedFilterColor.
# Based on guided_filter._computeCoefficients, guided_filter._computeOutput,
# GuidedFilterCommon.filter computes filtered image for color and gray.
class GuidedFilterCommon:
def __init__(self, guided_filter):
self._guided_filter = guided_filter
## Apply filter for the input image.
# @param p Input image for the filtering.
def filter(self, p):
p_32F = to32F(p)
if _isGray(p_32F):
return self._filterGray(p_32F)
cs = p.shape[2]
q = np.array(p_32F)
for ci in range(cs):
q[:, :, ci] = self._filterGray(p_32F[:, :, ci])
return q
def _filterGray(self, p):
ab = self._guided_filter._computeCoefficients(p)
return self._guided_filter._computeOutput(ab, self._guided_filter._I)
## Guided filter for gray guidance image.
class GuidedFilterGray:
# @param I Input gray guidance image.
# @param radius Radius of Guided Filter.
# @param epsilon Regularization term of Guided Filter.
def __init__(self, I, radius=5, epsilon=0.4):
self._radius = 2 * radius + 1
self._epsilon = epsilon
self._I = to32F(I)
self._initFilter()
self._filter_common = GuidedFilterCommon(self)
## Apply filter for the input image.
# @param p Input image for the filtering.
def filter(self, p):
return self._filter_common.filter(p)
def _initFilter(self):
I = self._I
r = self._radius
self._I_mean = cv2.blur(I, (r, r))
I_mean_sq = cv2.blur(I ** 2, (r, r))
self._I_var = I_mean_sq - self._I_mean ** 2
def _computeCoefficients(self, p):
r = self._radius
p_mean = cv2.blur(p, (r, r))
p_cov = p_mean - self._I_mean * p_mean
a = p_cov / (self._I_var + self._epsilon)
b = p_mean - a * self._I_mean
a_mean = cv2.blur(a, (r, r))
b_mean = cv2.blur(b, (r, r))
return a_mean, b_mean
def _computeOutput(self, ab, I):
a_mean, b_mean = ab
return a_mean * I + b_mean
## Guided filter for color guidance image.
class GuidedFilterColor:
# @param I Input color guidance image.
# @param radius Radius of Guided Filter.
# @param epsilon Regularization term of Guided Filter.
def __init__(self, I, radius=5, epsilon=0.2):
self._radius = 2 * radius + 1
self._epsilon = epsilon
self._I = to32F(I)
self._initFilter()
self._filter_common = GuidedFilterCommon(self)
## Apply filter for the input image.
# @param p Input image for the filtering.
def filter(self, p):
return self._filter_common.filter(p)
def _initFilter(self):
I = self._I
r = self._radius
eps = self._epsilon
Ir, Ig, Ib = I[:, :, 0], I[:, :, 1], I[:, :, 2]
self._Ir_mean = cv2.blur(Ir, (r, r))
self._Ig_mean = cv2.blur(Ig, (r, r))
self._Ib_mean = cv2.blur(Ib, (r, r))
Irr_var = cv2.blur(Ir ** 2, (r, r)) - self._Ir_mean ** 2 + eps
Irg_var = cv2.blur(Ir * Ig, (r, r)) - self._Ir_mean * self._Ig_mean
Irb_var = cv2.blur(Ir * Ib, (r, r)) - self._Ir_mean * self._Ib_mean
Igg_var = cv2.blur(Ig * Ig, (r, r)) - self._Ig_mean * self._Ig_mean + eps
Igb_var = cv2.blur(Ig * Ib, (r, r)) - self._Ig_mean * self._Ib_mean
Ibb_var = cv2.blur(Ib * Ib, (r, r)) - self._Ib_mean * self._Ib_mean + eps
Irr_inv = Igg_var * Ibb_var - Igb_var * Igb_var
Irg_inv = Igb_var * Irb_var - Irg_var * Ibb_var
Irb_inv = Irg_var * Igb_var - Igg_var * Irb_var
Igg_inv = Irr_var * Ibb_var - Irb_var * Irb_var
Igb_inv = Irb_var * Irg_var - Irr_var * Igb_var
Ibb_inv = Irr_var * Igg_var - Irg_var * Irg_var
I_cov = Irr_inv * Irr_var + Irg_inv * Irg_var + Irb_inv * Irb_var
Irr_inv /= I_cov
Irg_inv /= I_cov
Irb_inv /= I_cov
Igg_inv /= I_cov
Igb_inv /= I_cov
Ibb_inv /= I_cov
self._Irr_inv = Irr_inv
self._Irg_inv = Irg_inv
self._Irb_inv = Irb_inv
self._Igg_inv = Igg_inv
self._Igb_inv = Igb_inv
self._Ibb_inv = Ibb_inv
def _computeCoefficients(self, p):
r = self._radius
I = self._I
Ir, Ig, Ib = I[:, :, 0], I[:, :, 1], I[:, :, 2]
p_mean = cv2.blur(p, (r, r))
Ipr_mean = cv2.blur(Ir * p, (r, r))
Ipg_mean = cv2.blur(Ig * p, (r, r))
Ipb_mean = cv2.blur(Ib * p, (r, r))
Ipr_cov = Ipr_mean - self._Ir_mean * p_mean
Ipg_cov = Ipg_mean - self._Ig_mean * p_mean
Ipb_cov = Ipb_mean - self._Ib_mean * p_mean
ar = self._Irr_inv * Ipr_cov + self._Irg_inv * Ipg_cov + self._Irb_inv * Ipb_cov
ag = self._Irg_inv * Ipr_cov + self._Igg_inv * Ipg_cov + self._Igb_inv * Ipb_cov
ab = self._Irb_inv * Ipr_cov + self._Igb_inv * Ipg_cov + self._Ibb_inv * Ipb_cov
b = p_mean - ar * self._Ir_mean - ag * self._Ig_mean - ab * self._Ib_mean
ar_mean = cv2.blur(ar, (r, r))
ag_mean = cv2.blur(ag, (r, r))
ab_mean = cv2.blur(ab, (r, r))
b_mean = cv2.blur(b, (r, r))
return ar_mean, ag_mean, ab_mean, b_mean
def _computeOutput(self, ab, I):
ar_mean, ag_mean, ab_mean, b_mean = ab
Ir, Ig, Ib = I[:, :, 0], I[:, :, 1], I[:, :, 2]
q = (ar_mean * Ir +
ag_mean * Ig +
ab_mean * Ib +
b_mean)
return q