xmanii commited on
Commit
07b7842
1 Parent(s): 5e4ab50

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Alibaba-NLP/gte-multilingual-base
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:2000
11
+ - loss:CosineSimilarityLoss
12
+ widget:
13
+ - source_sentence: انقلاب صنعتی چگونه جامعه را تغییر داد؟
14
+ sentences:
15
+ - انقلاب صنعتی منجر به شهرنشینی شد زیرا مردم به شهرها نقل مکان کردند تا در کارخانه‌ها
16
+ کار کنند.
17
+ - انقلاب صنعتی منجر به شهرنشینی شد زیرا مردم به شهرها نقل مکان کردند تا در کارخانه‌ها
18
+ کار کنند.
19
+ - انقلاب صنعتی چگونه جامعه را تغییر داد؟
20
+ - source_sentence: الکترون‌ها چه نقشی در پیوندهای شیمیایی ایفا می‌کنند؟
21
+ sentences:
22
+ - الکترون‌ها چه نقشی در پیوندهای شیمیایی ایفا می‌کنند؟
23
+ - پروتون‌ها در هسته بر هویت و ویژگی‌های اتم تأثیر می‌گذارند که به طور غیرمستقیم
24
+ بر نحوه‌ی تشکیل پیوندهای شیمیایی تأثیر دارد.
25
+ - پروتون‌ها در هسته بر هویت و ویژگی‌های اتم تأثیر می‌گذارند که به طور غیرمستقیم
26
+ بر نحوه‌ی تشکیل پیوندهای شیمیایی تأثیر دارد.
27
+ - source_sentence: عملکردهای اصلی سیستم ایمنی انسان چیست؟
28
+ sentences:
29
+ - آنتی بادی‌ها توسط سیستم ایمنی برای کمک به خنثی کردن پاتوژن‌های ایجادکننده عفونت
30
+ تولید می‌شوند.
31
+ - آنتی بادی‌ها توسط سیستم ایمنی برای کمک به خنثی کردن پاتوژن‌های ایجادکننده عفونت
32
+ تولید می‌شوند.
33
+ - عملکردهای اصلی سیستم ایمنی انسان چیست؟
34
+ - source_sentence: ماهیت بنیادی واقعیت چیست؟
35
+ sentences:
36
+ - مفهوم واقعیت شامل درک جهان فیزیکی و قوانین طبیعتی است که بر آن حاکم هستند.
37
+ - مفهوم واقعیت شامل درک جهان فیزیکی و قوانین طبیعتی است که بر آن حاکم هستند.
38
+ - ماهیت بنیادی واقعیت چیست؟
39
+ - source_sentence: شخصیت‌های اصلی در جنبش کوبیسم چه کسانی بودند؟
40
+ sentences:
41
+ - لئوناردو داوینچی به خاطر مشارکت‌هایش در رنسانس شناخته می‌شود، نه کوبیسم.
42
+ - لئوناردو داوینچی به خاطر مشارکت‌هایش در رنسانس شناخته می‌شود، نه کوبیسم.
43
+ - شخصیت‌های اصلی در جنبش کوبیسم چه کسانی بودند؟
44
+ ---
45
+
46
+ # SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
47
+
48
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
49
+
50
+ ## Model Details
51
+
52
+ ### Model Description
53
+ - **Model Type:** Sentence Transformer
54
+ - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 7fc06782350c1a83f88b15dd4b38ef853d3b8503 -->
55
+ - **Maximum Sequence Length:** 8192 tokens
56
+ - **Output Dimensionality:** 768 tokens
57
+ - **Similarity Function:** Cosine Similarity
58
+ <!-- - **Training Dataset:** Unknown -->
59
+ <!-- - **Language:** Unknown -->
60
+ <!-- - **License:** Unknown -->
61
+
62
+ ### Model Sources
63
+
64
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
65
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
66
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
67
+
68
+ ### Full Model Architecture
69
+
70
+ ```
71
+ SentenceTransformer(
72
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
73
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
74
+ (2): Normalize()
75
+ )
76
+ ```
77
+
78
+ ## Usage
79
+
80
+ ### Direct Usage (Sentence Transformers)
81
+
82
+ First install the Sentence Transformers library:
83
+
84
+ ```bash
85
+ pip install -U sentence-transformers
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+ ```python
90
+ from sentence_transformers import SentenceTransformer
91
+
92
+ # Download from the 🤗 Hub
93
+ model = SentenceTransformer("xmanii/maux-gte-persian")
94
+ # Run inference
95
+ sentences = [
96
+ 'شخصیت\u200cهای اصلی در جنبش کوبیسم چه کسانی بودند؟',
97
+ 'لئوناردو داوینچی به خاطر مشارکت\u200cهایش در رنسانس شناخته می\u200cشود، نه کوبیسم.',
98
+ 'شخصیت\u200cهای اصلی در جنبش کوبیسم چه کسانی بودند؟',
99
+ ]
100
+ embeddings = model.encode(sentences)
101
+ print(embeddings.shape)
102
+ # [3, 768]
103
+
104
+ # Get the similarity scores for the embeddings
105
+ similarities = model.similarity(embeddings, embeddings)
106
+ print(similarities.shape)
107
+ # [3, 3]
108
+ ```
109
+
110
+ <!--
111
+ ### Direct Usage (Transformers)
112
+
113
+ <details><summary>Click to see the direct usage in Transformers</summary>
114
+
115
+ </details>
116
+ -->
117
+
118
+ <!--
119
+ ### Downstream Usage (Sentence Transformers)
120
+
121
+ You can finetune this model on your own dataset.
122
+
123
+ <details><summary>Click to expand</summary>
124
+
125
+ </details>
126
+ -->
127
+
128
+ <!--
129
+ ### Out-of-Scope Use
130
+
131
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
132
+ -->
133
+
134
+ <!--
135
+ ## Bias, Risks and Limitations
136
+
137
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
138
+ -->
139
+
140
+ <!--
141
+ ### Recommendations
142
+
143
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
144
+ -->
145
+
146
+ ## Training Details
147
+
148
+ ### Training Hyperparameters
149
+ #### Non-Default Hyperparameters
150
+
151
+ - `eval_strategy`: steps
152
+ - `per_device_train_batch_size`: 32
153
+ - `per_device_eval_batch_size`: 32
154
+ - `learning_rate`: 2e-05
155
+ - `warmup_ratio`: 0.1
156
+ - `fp16`: True
157
+
158
+ #### All Hyperparameters
159
+ <details><summary>Click to expand</summary>
160
+
161
+ - `overwrite_output_dir`: False
162
+ - `do_predict`: False
163
+ - `eval_strategy`: steps
164
+ - `prediction_loss_only`: True
165
+ - `per_device_train_batch_size`: 32
166
+ - `per_device_eval_batch_size`: 32
167
+ - `per_gpu_train_batch_size`: None
168
+ - `per_gpu_eval_batch_size`: None
169
+ - `gradient_accumulation_steps`: 1
170
+ - `eval_accumulation_steps`: None
171
+ - `torch_empty_cache_steps`: None
172
+ - `learning_rate`: 2e-05
173
+ - `weight_decay`: 0.0
174
+ - `adam_beta1`: 0.9
175
+ - `adam_beta2`: 0.999
176
+ - `adam_epsilon`: 1e-08
177
+ - `max_grad_norm`: 1.0
178
+ - `num_train_epochs`: 3
179
+ - `max_steps`: -1
180
+ - `lr_scheduler_type`: linear
181
+ - `lr_scheduler_kwargs`: {}
182
+ - `warmup_ratio`: 0.1
183
+ - `warmup_steps`: 0
184
+ - `log_level`: passive
185
+ - `log_level_replica`: warning
186
+ - `log_on_each_node`: True
187
+ - `logging_nan_inf_filter`: True
188
+ - `save_safetensors`: True
189
+ - `save_on_each_node`: False
190
+ - `save_only_model`: False
191
+ - `restore_callback_states_from_checkpoint`: False
192
+ - `no_cuda`: False
193
+ - `use_cpu`: False
194
+ - `use_mps_device`: False
195
+ - `seed`: 42
196
+ - `data_seed`: None
197
+ - `jit_mode_eval`: False
198
+ - `use_ipex`: False
199
+ - `bf16`: False
200
+ - `fp16`: True
201
+ - `fp16_opt_level`: O1
202
+ - `half_precision_backend`: auto
203
+ - `bf16_full_eval`: False
204
+ - `fp16_full_eval`: False
205
+ - `tf32`: None
206
+ - `local_rank`: 0
207
+ - `ddp_backend`: None
208
+ - `tpu_num_cores`: None
209
+ - `tpu_metrics_debug`: False
210
+ - `debug`: []
211
+ - `dataloader_drop_last`: False
212
+ - `dataloader_num_workers`: 0
213
+ - `dataloader_prefetch_factor`: None
214
+ - `past_index`: -1
215
+ - `disable_tqdm`: False
216
+ - `remove_unused_columns`: True
217
+ - `label_names`: None
218
+ - `load_best_model_at_end`: False
219
+ - `ignore_data_skip`: False
220
+ - `fsdp`: []
221
+ - `fsdp_min_num_params`: 0
222
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
223
+ - `fsdp_transformer_layer_cls_to_wrap`: None
224
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
225
+ - `deepspeed`: None
226
+ - `label_smoothing_factor`: 0.0
227
+ - `optim`: adamw_torch
228
+ - `optim_args`: None
229
+ - `adafactor`: False
230
+ - `group_by_length`: False
231
+ - `length_column_name`: length
232
+ - `ddp_find_unused_parameters`: None
233
+ - `ddp_bucket_cap_mb`: None
234
+ - `ddp_broadcast_buffers`: False
235
+ - `dataloader_pin_memory`: True
236
+ - `dataloader_persistent_workers`: False
237
+ - `skip_memory_metrics`: True
238
+ - `use_legacy_prediction_loop`: False
239
+ - `push_to_hub`: False
240
+ - `resume_from_checkpoint`: None
241
+ - `hub_model_id`: None
242
+ - `hub_strategy`: every_save
243
+ - `hub_private_repo`: False
244
+ - `hub_always_push`: False
245
+ - `gradient_checkpointing`: False
246
+ - `gradient_checkpointing_kwargs`: None
247
+ - `include_inputs_for_metrics`: False
248
+ - `eval_do_concat_batches`: True
249
+ - `fp16_backend`: auto
250
+ - `push_to_hub_model_id`: None
251
+ - `push_to_hub_organization`: None
252
+ - `mp_parameters`:
253
+ - `auto_find_batch_size`: False
254
+ - `full_determinism`: False
255
+ - `torchdynamo`: None
256
+ - `ray_scope`: last
257
+ - `ddp_timeout`: 1800
258
+ - `torch_compile`: False
259
+ - `torch_compile_backend`: None
260
+ - `torch_compile_mode`: None
261
+ - `dispatch_batches`: None
262
+ - `split_batches`: None
263
+ - `include_tokens_per_second`: False
264
+ - `include_num_input_tokens_seen`: False
265
+ - `neftune_noise_alpha`: None
266
+ - `optim_target_modules`: None
267
+ - `batch_eval_metrics`: False
268
+ - `eval_on_start`: False
269
+ - `use_liger_kernel`: False
270
+ - `eval_use_gather_object`: False
271
+ - `batch_sampler`: batch_sampler
272
+ - `multi_dataset_batch_sampler`: proportional
273
+
274
+ </details>
275
+
276
+ ### Training Logs
277
+ | Epoch | Step | Training Loss | Validation Loss |
278
+ |:------:|:----:|:-------------:|:---------------:|
279
+ | 0.8772 | 50 | 0.0584 | - |
280
+ | 1.7544 | 100 | 0.0342 | 0.0379 |
281
+ | 2.6316 | 150 | 0.0277 | - |
282
+
283
+
284
+ ### Framework Versions
285
+ - Python: 3.10.8
286
+ - Sentence Transformers: 3.2.0
287
+ - Transformers: 4.45.2
288
+ - PyTorch: 2.4.1+cu121
289
+ - Accelerate: 1.0.1
290
+ - Datasets: 3.0.1
291
+ - Tokenizers: 0.20.1
292
+
293
+ ## Citation
294
+
295
+ ### BibTeX
296
+
297
+ #### Sentence Transformers
298
+ ```bibtex
299
+ @inproceedings{reimers-2019-sentence-bert,
300
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
301
+ author = "Reimers, Nils and Gurevych, Iryna",
302
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
303
+ month = "11",
304
+ year = "2019",
305
+ publisher = "Association for Computational Linguistics",
306
+ url = "https://arxiv.org/abs/1908.10084",
307
+ }
308
+ ```
309
+
310
+ <!--
311
+ ## Glossary
312
+
313
+ *Clearly define terms in order to be accessible across audiences.*
314
+ -->
315
+
316
+ <!--
317
+ ## Model Card Authors
318
+
319
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
320
+ -->
321
+
322
+ <!--
323
+ ## Model Card Contact
324
+
325
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
326
+ -->
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Alibaba-NLP/gte-multilingual-base",
3
+ "architectures": [
4
+ "NewModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
9
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
14
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
15
+ },
16
+ "classifier_dropout": 0.0,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 768,
20
+ "id2label": {
21
+ "0": "LABEL_0"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 3072,
25
+ "label2id": {
26
+ "LABEL_0": 0
27
+ },
28
+ "layer_norm_eps": 1e-12,
29
+ "layer_norm_type": "layer_norm",
30
+ "logn_attention_clip1": false,
31
+ "logn_attention_scale": false,
32
+ "max_position_embeddings": 8192,
33
+ "model_type": "new",
34
+ "num_attention_heads": 12,
35
+ "num_hidden_layers": 12,
36
+ "pack_qkv": true,
37
+ "pad_token_id": 1,
38
+ "position_embedding_type": "rope",
39
+ "rope_scaling": {
40
+ "factor": 8.0,
41
+ "type": "ntk"
42
+ },
43
+ "rope_theta": 20000,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.45.2",
46
+ "type_vocab_size": 1,
47
+ "unpad_inputs": false,
48
+ "use_memory_efficient_attention": false,
49
+ "vocab_size": 250048
50
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6ca4dbfeb469c4164c9c41bc9f10d83db0a2b10b814c0adc9088bdb79bacfe1
3
+ size 1221487872
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
3
+ size 17082988
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }