Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
# hubert-base-ch-speech-emotion-recognition
|
5 |
+
This model uses [TencentGameMate/chinese-hubert-base]([TencentGameMate/chinese-hubert-base · Hugging Face](https://huggingface.co/TencentGameMate/chinese-hubert-base)) as the pre-training model for training on the CASIA dataset.
|
6 |
+
|
7 |
+
The CASIA dataset provides 1200 samples of recordings from actor performing on 6 different emotions in Chinese(The official website provides a total of 9600 pieces of data, and the data set I used may not be complete), which are:
|
8 |
+
|
9 |
+
```python
|
10 |
+
emotions = ['anger', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
11 |
+
```
|
12 |
+
|
13 |
+
# Usage
|
14 |
+
```python
|
15 |
+
import os
|
16 |
+
import random
|
17 |
+
|
18 |
+
import librosa
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from transformers import AutoConfig, Wav2Vec2FeatureExtractor, HubertPreTrainedModel, HubertModel
|
23 |
+
|
24 |
+
model_name_or_path = "xmj2002/hubert-base-ch-speech-emotion-recognition"
|
25 |
+
duration = 6
|
26 |
+
sample_rate = 16000
|
27 |
+
|
28 |
+
config = AutoConfig.from_pretrained(
|
29 |
+
pretrained_model_name_or_path=model_name_or_path,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def id2class(id):
|
34 |
+
if id == 0:
|
35 |
+
return "angry"
|
36 |
+
elif id == 1:
|
37 |
+
return "fear"
|
38 |
+
elif id == 2:
|
39 |
+
return "happy"
|
40 |
+
elif id == 3:
|
41 |
+
return "neutral"
|
42 |
+
elif id == 4:
|
43 |
+
return "sad"
|
44 |
+
else:
|
45 |
+
return "surprise"
|
46 |
+
|
47 |
+
|
48 |
+
def predict(path, processor, model):
|
49 |
+
speech, sr = librosa.load(path=path, sr=sample_rate)
|
50 |
+
speech = processor(speech, padding="max_length", truncation=True, max_length=duration * sr,
|
51 |
+
return_tensors="pt", sampling_rate=sr).input_values
|
52 |
+
with torch.no_grad():
|
53 |
+
logit = model(speech)
|
54 |
+
score = F.softmax(logit, dim=1).detach().cpu().numpy()[0]
|
55 |
+
id = torch.argmax(logit).cpu().numpy()
|
56 |
+
print(f"file path: {path} \t predict: {id2class(id)} \t score:{score[id]} ")
|
57 |
+
|
58 |
+
|
59 |
+
class HubertClassificationHead(nn.Module):
|
60 |
+
def __init__(self, config):
|
61 |
+
super().__init__()
|
62 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
63 |
+
self.dropout = nn.Dropout(config.classifier_dropout)
|
64 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_class)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x = self.dense(x)
|
68 |
+
x = torch.tanh(x)
|
69 |
+
x = self.dropout(x)
|
70 |
+
x = self.out_proj(x)
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class HubertForSpeechClassification(HubertPreTrainedModel):
|
75 |
+
def __init__(self, config):
|
76 |
+
super().__init__(config)
|
77 |
+
self.hubert = HubertModel(config)
|
78 |
+
self.classifier = HubertClassificationHead(config)
|
79 |
+
self.init_weights()
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
outputs = self.hubert(x)
|
83 |
+
hidden_states = outputs[0]
|
84 |
+
x = torch.mean(hidden_states, dim=1)
|
85 |
+
x = self.classifier(x)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
processor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
90 |
+
model = HubertForSpeechClassification.from_pretrained(
|
91 |
+
model_name_or_path,
|
92 |
+
config=config,
|
93 |
+
)
|
94 |
+
model.eval()
|
95 |
+
|
96 |
+
file_path = [f"test_data/{path}" for path in os.listdir("test_data")]
|
97 |
+
path = random.sample(file_path, 1)[0]
|
98 |
+
predict(path, processor, model)
|
99 |
+
|
100 |
+
```
|
101 |
+
# Training setting
|
102 |
+
|
103 |
+
* Data set segmentation ratio: training set: verification set: test set = 0.6:0.2:0.2
|
104 |
+
|
105 |
+
* seed: 34
|
106 |
+
|
107 |
+
* batch_size: 36
|
108 |
+
|
109 |
+
* lr: 2e-4
|
110 |
+
|
111 |
+
* optimizer: AdamW(betas=(0.93,0.98), weight_decay=0.2)
|
112 |
+
|
113 |
+
* scheduler: Step_LR(step_size=10, gamma=0.3)
|
114 |
+
|
115 |
+
* classifier dropout: 0.1
|
116 |
+
|
117 |
+
* optimizer parameter:
|
118 |
+
|
119 |
+
```python
|
120 |
+
for name, param in model.named_parameters():
|
121 |
+
if "hubert" in name:
|
122 |
+
parameter.append({'params': param, 'lr': 0.2 * lr})
|
123 |
+
else:
|
124 |
+
parameter.append({'params': param, "lr": lr})
|
125 |
+
|
126 |
+
```
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
# Metric
|
131 |
+
|
132 |
+
**Loss(test set): 0.1165**
|
133 |
+
|
134 |
+
**Accuracy(test set): 0.972**
|
135 |
+
|
136 |
+
*Accuracy curve of training set and verification set*
|
137 |
+
|
138 |
+
<div> <img src="https://huggingface.co/xmj2002/hubert-base-ch-speech-emotion-recognition/resolve/main/accuracy.png" width = 80%/> </div>
|
139 |
+
|
140 |
+
|
141 |
+
*Loss curve of training set and verification set*
|
142 |
+
|
143 |
+
<div> <img src="https://huggingface.co/xmj2002/hubert-base-ch-speech-emotion-recognition/resolve/main/loss.png" width = 80%/> </div>
|