xoyeop commited on
Commit
00cdf95
1 Parent(s): f727466

Model save

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: deberta-base-HSOL-WIKI-CLS
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # deberta-base-HSOL-WIKI-CLS
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.1529
24
+ - Precision: 0.7757
25
+ - Recall: 0.7782
26
+ - F1: 0.7769
27
+ - Accuracy: 0.8075
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 4
48
+ - eval_batch_size: 4
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.6211 | 1.0 | 769 | 0.7439 | 0.8403 | 0.6654 | 0.6824 | 0.7854 |
59
+ | 0.5518 | 2.0 | 1538 | 0.4591 | 0.7945 | 0.7469 | 0.7629 | 0.8114 |
60
+ | 0.4051 | 3.0 | 2307 | 0.7194 | 0.7718 | 0.7674 | 0.7695 | 0.8036 |
61
+ | 0.2264 | 4.0 | 3076 | 0.9925 | 0.7918 | 0.7546 | 0.7682 | 0.8127 |
62
+ | 0.166 | 5.0 | 3845 | 1.1529 | 0.7757 | 0.7782 | 0.7769 | 0.8075 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.42.4
68
+ - Pytorch 2.4.0+cu121
69
+ - Datasets 2.21.0
70
+ - Tokenizers 0.19.1