Model save
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -49,15 +49,17 @@ The following hyperparameters were used during training:
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
-
| Training Loss | Epoch | Step
|
57 |
-
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3857
|
24 |
+
- Precision: 0.7092
|
25 |
+
- Recall: 0.7122
|
26 |
+
- F1: 0.7105
|
27 |
+
- Accuracy: 0.9463
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 5
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.385 | 1.0 | 2500 | 0.4128 | 0.6909 | 0.6936 | 0.6910 | 0.9204 |
|
59 |
+
| 0.2798 | 2.0 | 5000 | 0.4055 | 0.6934 | 0.6951 | 0.6934 | 0.9234 |
|
60 |
+
| 0.2032 | 3.0 | 7500 | 0.3651 | 0.7042 | 0.7064 | 0.7052 | 0.9392 |
|
61 |
+
| 0.1438 | 4.0 | 10000 | 0.4059 | 0.7055 | 0.7089 | 0.7069 | 0.9416 |
|
62 |
+
| 0.0829 | 5.0 | 12500 | 0.3857 | 0.7092 | 0.7122 | 0.7105 | 0.9463 |
|
63 |
|
64 |
|
65 |
### Framework versions
|