---
library_name: peft
datasets:
- tatsu-lab/alpaca
- silk-road/alpaca-data-gpt4-chinese
pipeline_tag: conversational
base_model: internlm/internlm-chat-20b
---
[![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
## Model
internlm-chat-20b-qlora-alpaca-enzh is fine-tuned from [InternLM-Chat-20B](https://huggingface.co/internlm/internlm-chat-20b) with [alpaca en](https://huggingface.co/datasets/tatsu-lab/alpaca) / [zh](https://huggingface.co/datasets/silk-road/alpaca-data-gpt4-chinese) datasets by [XTuner](https://github.com/InternLM/xtuner).
## Quickstart
### Usage with XTuner CLI
#### Installation
```shell
pip install xtuner
```
#### Chat
```shell
xtuner chat internlm/internlm-chat-20b --adapter xtuner/internlm-chat-20b-qlora-alpaca-enzh --prompt-template internlm_chat --system-template alpaca
```
#### Fine-tune
Use the following command to quickly reproduce the fine-tuning results.
```shell
xtuner train internlm_chat_20b_qlora_alpaca_enzh_e3
```