qwen_cUNL_entropy / README.md
yakazimir's picture
End of training
dbe0ef9 verified
metadata
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
  - alignment-handbook
  - trl
  - simpo
  - generated_from_trainer
  - trl
  - simpo
  - generated_from_trainer
datasets:
  - yakazimir/ultrafeedback_binarized
model-index:
  - name: qwen_cUNL_entropy
    results: []

qwen_cUNL_entropy

This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5196
  • Rewards/chosen: -7.4572
  • Rewards/rejected: -8.6117
  • Rewards/accuracies: 0.7285
  • Rewards/margins: 1.1545
  • Logps/rejected: -8.6117
  • Logps/chosen: -7.4572
  • Logits/rejected: 0.5435
  • Logits/chosen: 0.4914

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.8222 0.2141 400 0.8285 -1.7118 -1.9086 0.5534 0.1968 -1.9086 -1.7118 0.3777 0.2894
0.5698 0.4282 800 0.5834 -4.3085 -4.8785 0.6899 0.5700 -4.8785 -4.3085 0.4424 0.3680
0.5645 0.6422 1200 0.5407 -5.3672 -6.1336 0.7196 0.7664 -6.1336 -5.3672 0.5839 0.4867
0.4723 0.8563 1600 0.5308 -6.0239 -6.7829 0.7188 0.7590 -6.7829 -6.0239 0.4449 0.3580
0.5671 1.0704 2000 0.5245 -6.1299 -6.9744 0.7270 0.8445 -6.9744 -6.1299 0.5458 0.4536
0.5184 1.2845 2400 0.5194 -6.2767 -7.2502 0.7300 0.9736 -7.2502 -6.2767 0.5423 0.4595
0.4823 1.4986 2800 0.5166 -6.4303 -7.3916 0.7285 0.9613 -7.3916 -6.4303 0.4681 0.4003
0.5627 1.7127 3200 0.5134 -6.6572 -7.6688 0.7352 1.0116 -7.6688 -6.6572 0.5174 0.4489
0.5355 1.9267 3600 0.5093 -6.3599 -7.3630 0.7352 1.0031 -7.3630 -6.3599 0.4672 0.4010
0.3968 2.1408 4000 0.5234 -7.4930 -8.6276 0.7248 1.1346 -8.6276 -7.4930 0.5678 0.5128
0.4135 2.3549 4400 0.5203 -7.4952 -8.6565 0.7240 1.1613 -8.6565 -7.4952 0.4661 0.4203
0.4277 2.5690 4800 0.5189 -7.3524 -8.5007 0.7270 1.1483 -8.5007 -7.3524 0.5701 0.5143
0.3999 2.7831 5200 0.5187 -7.4281 -8.5789 0.7292 1.1507 -8.5789 -7.4281 0.5522 0.4986
0.3855 2.9972 5600 0.5195 -7.4572 -8.6117 0.7285 1.1545 -8.6117 -7.4572 0.5435 0.4914

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1