File size: 2,053 Bytes
2502318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vivit-b-16x2-kinetics400-finetuned-vivit-severity
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vivit-b-16x2-kinetics400-finetuned-vivit-severity

This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0088
- Accuracy: 0.8530

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 5210

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0504        | 0.1   | 521  | 0.9279          | 0.8280   |
| 1.1617        | 1.1   | 1042 | 0.9890          | 0.8280   |
| 0.5088        | 2.1   | 1563 | 0.8413          | 0.8172   |
| 0.7947        | 3.1   | 2084 | 0.7631          | 0.8423   |
| 0.0028        | 4.1   | 2605 | 0.8718          | 0.8459   |
| 0.7502        | 5.1   | 3126 | 0.9022          | 0.8495   |
| 0.814         | 6.1   | 3647 | 0.8467          | 0.8423   |
| 0.5251        | 7.1   | 4168 | 0.8914          | 0.8602   |
| 0.9977        | 8.1   | 4689 | 0.9599          | 0.8530   |
| 0.0007        | 9.1   | 5210 | 1.0088          | 0.8530   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.0.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1