--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: HuggingFaceTB/SmolLM-135M widget: - messages: - role: user content: What is your favorite condiment? license: other --- # CosmoSpeak
CosmoSpeak
## Model Summary CosmoSpeak is a state-of-the-art chatbot that specializes in the domain of Astronautics / Space Mission Engineering. It covers topics such as .Flight control team .Flight Dynamics .Procedure Preparation and Validation .Mission Planning .Extravehicular Activities (EVAs) .Collision Avoidance Manoeuvres .Mission Termination and De-Orbit Strategies CosmoSpeak is a fine-tuned SmolLM-135M trained with Astrochat dataset (https://huggingface.co/datasets/patrickfleith/AstroChat) # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "https://huggingface.co/yd915/CosmoSpeak" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```