--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - trl - sft - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased-wnut_17-full results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.6546310832025117 - name: Recall type: recall value: 0.386468952734013 - name: F1 type: f1 value: 0.486013986013986 - name: Accuracy type: accuracy value: 0.9493394895472618 --- # bert-large-uncased-wnut_17-full This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.4040 - Precision: 0.6546 - Recall: 0.3865 - F1: 0.4860 - Accuracy: 0.9493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2471 | 0.6341 | 0.3726 | 0.4694 | 0.9461 | | No log | 2.0 | 426 | 0.2454 | 0.5882 | 0.3707 | 0.4548 | 0.9475 | | 0.1196 | 3.0 | 639 | 0.3091 | 0.6278 | 0.3689 | 0.4647 | 0.9490 | | 0.1196 | 4.0 | 852 | 0.3758 | 0.6536 | 0.3411 | 0.4482 | 0.9473 | | 0.0235 | 5.0 | 1065 | 0.3127 | 0.5632 | 0.4004 | 0.4680 | 0.9490 | | 0.0235 | 6.0 | 1278 | 0.3988 | 0.6562 | 0.3698 | 0.4730 | 0.9492 | | 0.0235 | 7.0 | 1491 | 0.4040 | 0.6546 | 0.3865 | 0.4860 | 0.9493 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1