yentinglin
commited on
Commit
•
5552136
1
Parent(s):
d2bd70e
Update README.md
Browse files
README.md
CHANGED
@@ -23,17 +23,106 @@ extra_gated_fields:
|
|
23 |
Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox
|
24 |
使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox
|
25 |
---
|
|
|
26 |
|
27 |
-
# 🌟 Checkout
|
28 |
-
# Taiwan LLM based on Mistral-7B-v0.1
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
# Collaboration with Ubitus K.K. 💪💪💪
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox
|
24 |
使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox
|
25 |
---
|
26 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
27 |
|
28 |
+
# 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟
|
|
|
29 |
|
30 |
+
# Model Card for Taiwan LLM 7B v2.1 chat
|
31 |
|
32 |
+
Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan.
|
33 |
+
Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning.
|
34 |
+
This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances.
|
35 |
+
It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance.
|
36 |
+
For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf).
|
37 |
|
|
|
38 |
|
39 |
+
## Model description
|
40 |
|
41 |
+
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
|
42 |
+
- **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw)
|
43 |
+
- **Finetuned from model:** [yentinglin/Taiwan-LLM-7B-v2.0-base](https://huggingface.co/yentinglin/yentinglin/Taiwan-LLM-7B-v2.0-base)
|
44 |
|
45 |
+
### Model Sources
|
46 |
+
|
47 |
+
<!-- Provide the basic links for the model. -->
|
48 |
+
|
49 |
+
- **Repository:** https://github.com/MiuLab/Taiwan-LLaMa
|
50 |
+
- **Demo:** https://twllm.com/
|
51 |
+
|
52 |
+
## Performance
|
53 |
+
|
54 |
+
|
55 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png)
|
56 |
+
|
57 |
+
## Intended uses
|
58 |
+
|
59 |
+
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
|
60 |
+
|
61 |
+
```python
|
62 |
+
# pip install transformers>=4.34
|
63 |
+
# pip install accelerate
|
64 |
+
|
65 |
+
import torch
|
66 |
+
from transformers import pipeline
|
67 |
+
|
68 |
+
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
|
69 |
+
|
70 |
+
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
|
71 |
+
messages = [
|
72 |
+
{
|
73 |
+
"role": "system",
|
74 |
+
"content": "你是一個人工智慧助理",
|
75 |
+
},
|
76 |
+
{"role": "user", "content": "東北季風如何影響台灣氣候?"},
|
77 |
+
]
|
78 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
79 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
80 |
+
print(outputs[0]["generated_text"])
|
81 |
+
```
|
82 |
+
|
83 |
+
### Training hyperparameters
|
84 |
+
|
85 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png)
|
86 |
+
|
87 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png)
|
88 |
+
|
89 |
+
|
90 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png)
|
91 |
+
|
92 |
+
The following hyperparameters were used during training:
|
93 |
+
- learning_rate: 5e-05
|
94 |
+
- distributed_type: multi-GPU
|
95 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
96 |
+
- lr_scheduler_type: cosine
|
97 |
+
- lr_scheduler_warmup_ratio: 0.03
|
98 |
+
- num_epochs: 5.0
|
99 |
+
|
100 |
+
## Citation
|
101 |
+
|
102 |
+
If you find Taiwan LLM is useful in your work, please cite it with:
|
103 |
+
|
104 |
+
```
|
105 |
+
@inproceedings{lin-chen-2023-llm,
|
106 |
+
title = "{LLM}-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models",
|
107 |
+
author = "Lin, Yen-Ting and Chen, Yun-Nung",
|
108 |
+
booktitle = "Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)",
|
109 |
+
month = jul,
|
110 |
+
year = "2023",
|
111 |
+
address = "Toronto, Canada",
|
112 |
+
publisher = "Association for Computational Linguistics",
|
113 |
+
url = "https://aclanthology.org/2023.nlp4convai-1.5",
|
114 |
+
pages = "47--58"
|
115 |
+
}
|
116 |
+
|
117 |
+
@misc{taiwanllama,
|
118 |
+
author={Lin, Yen-Ting and Chen, Yun-Nung},
|
119 |
+
title={Language Models for Taiwanese Culture},
|
120 |
+
year={2023},
|
121 |
+
url={https://github.com/MiuLab/Taiwan-LLaMa},
|
122 |
+
note={Code and models available at https://github.com/MiuLab/Taiwan-LLaMa},
|
123 |
+
}
|
124 |
+
```
|
125 |
+
|
126 |
+
# Acknowledgement
|
127 |
+
|
128 |
+
Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.
|