--- language: - ko - en base_model: facebook/mbart-large-50-many-to-many-mmt tags: - generated_from_trainer metrics: - bleu model-index: - name: ko-en_mbartLarge_exp5p results: [] --- # ko-en_mbartLarge_exp5p This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2328 - Bleu: 26.5495 - Gen Len: 18.4213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.6447 | 0.46 | 1000 | 1.5338 | 20.0927 | 18.3986 | | 1.4737 | 0.93 | 2000 | 1.4057 | 22.6168 | 18.5462 | | 1.3708 | 1.39 | 3000 | 1.3645 | 23.158 | 18.5132 | | 1.3357 | 1.86 | 4000 | 1.3166 | 24.2178 | 18.4343 | | 1.2274 | 2.32 | 5000 | 1.2854 | 24.8105 | 18.4761 | | 1.2113 | 2.78 | 6000 | 1.2622 | 25.4518 | 18.2672 | | 1.1392 | 3.25 | 7000 | 1.2540 | 25.6184 | 18.4032 | | 1.125 | 3.71 | 8000 | 1.2401 | 25.3848 | 18.3781 | | 1.0423 | 4.18 | 9000 | 1.2354 | 25.9776 | 18.3387 | | 1.011 | 4.64 | 10000 | 1.2418 | 26.1619 | 18.4858 | | 0.9493 | 5.1 | 11000 | 1.2616 | 25.6398 | 18.2273 | | 0.888 | 5.57 | 12000 | 1.2328 | 26.5446 | 18.438 | | 0.8648 | 6.03 | 13000 | 1.2618 | 26.0371 | 18.4074 | | 0.776 | 6.5 | 14000 | 1.2669 | 26.0043 | 18.4629 | | 0.7856 | 6.96 | 15000 | 1.2592 | 26.2716 | 18.403 | | 0.6997 | 7.42 | 16000 | 1.3154 | 25.7842 | 18.3693 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1