File size: 2,263 Bytes
e645404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- ./sample_speech.py
- generated_from_trainer
model-index:
- name: en-xlsr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# en-xlsr
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3889
- Cer: 0.1082
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.4503 | 1.22 | 2000 | 1.0610 | 0.2687 |
| 1.0239 | 2.45 | 4000 | 0.6962 | 0.1904 |
| 0.8977 | 3.67 | 6000 | 0.5945 | 0.1687 |
| 0.804 | 4.9 | 8000 | 0.5328 | 0.1492 |
| 0.698 | 6.12 | 10000 | 0.5014 | 0.1365 |
| 0.6426 | 7.35 | 12000 | 0.4715 | 0.1322 |
| 0.61 | 8.57 | 14000 | 0.4530 | 0.1258 |
| 0.5709 | 9.79 | 16000 | 0.4300 | 0.1201 |
| 0.5235 | 11.02 | 18000 | 0.4168 | 0.1166 |
| 0.4778 | 12.24 | 20000 | 0.4057 | 0.1129 |
| 0.4571 | 13.47 | 22000 | 0.3945 | 0.1100 |
| 0.4388 | 14.69 | 24000 | 0.3891 | 0.1081 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
|