File size: 3,268 Bytes
9b1ce71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- ./sample_speech.py
- generated_from_trainer
model-index:
- name: zh-xlsr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zh-xlsr

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8449
- Cer: 0.4954

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.0153        | 0.5   | 330  | 5.3438          | 0.9522 |
| 5.3776        | 1.0   | 660  | 5.1534          | 0.9409 |
| 5.2604        | 1.5   | 990  | 5.0832          | 0.9108 |
| 5.2393        | 2.01  | 1320 | 5.0655          | 0.9073 |
| 5.1721        | 2.51  | 1650 | 5.0464          | 0.9000 |
| 5.1619        | 3.01  | 1980 | 5.0244          | 0.9045 |
| 5.1308        | 3.51  | 2310 | 5.0216          | 0.9020 |
| 5.0971        | 4.01  | 2640 | 4.9341          | 0.9040 |
| 5.0137        | 4.51  | 2970 | 4.8795          | 0.9144 |
| 4.9341        | 5.02  | 3300 | 4.7250          | 0.9039 |
| 4.6832        | 5.52  | 3630 | 4.2140          | 0.8367 |
| 4.1627        | 6.02  | 3960 | 3.4010          | 0.7318 |
| 3.5448        | 6.52  | 4290 | 2.8830          | 0.6480 |
| 3.2576        | 7.02  | 4620 | 2.6253          | 0.6266 |
| 2.8561        | 7.52  | 4950 | 2.4300          | 0.5866 |
| 2.7894        | 8.02  | 5280 | 2.2998          | 0.5750 |
| 2.6018        | 8.53  | 5610 | 2.1878          | 0.5549 |
| 2.546         | 9.03  | 5940 | 2.1450          | 0.5351 |
| 2.3787        | 9.53  | 6270 | 2.1027          | 0.5340 |
| 2.335         | 10.03 | 6600 | 2.0304          | 0.5166 |
| 2.2138        | 10.53 | 6930 | 2.0100          | 0.5165 |
| 2.2381        | 11.03 | 7260 | 1.9651          | 0.5031 |
| 2.1108        | 11.53 | 7590 | 1.9666          | 0.5035 |
| 2.0916        | 12.04 | 7920 | 1.9136          | 0.4998 |
| 2.0229        | 12.54 | 8250 | 1.8988          | 0.5028 |
| 2.0056        | 13.04 | 8580 | 1.8769          | 0.4996 |
| 1.9245        | 13.54 | 8910 | 1.8716          | 0.4955 |
| 1.9378        | 14.04 | 9240 | 1.8561          | 0.4946 |
| 1.9003        | 14.54 | 9570 | 1.8485          | 0.4936 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1