yfyeung commited on
Commit
101cbee
1 Parent(s): 87b186d

First commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. data/lang_bpe_500/L.pt +3 -0
  2. data/lang_bpe_500/Linv.pt +3 -0
  3. data/lang_bpe_500/bpe.model +3 -0
  4. data/lang_bpe_500/lexicon.txt +0 -0
  5. data/lang_bpe_500/tokens.txt +502 -0
  6. data/lang_bpe_500/words.txt +0 -0
  7. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  8. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  9. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  10. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  11. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-13-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  12. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-14-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  13. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-15-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  14. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-16-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  15. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-17-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  16. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-18-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  17. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-19-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  18. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-2-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  19. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-20-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  20. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-3-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  21. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-4-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  22. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-5-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  23. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-6-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  24. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-7-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  25. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-8-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  26. decoding-results/greedy_search/errs-test-clean-epoch-30-avg-9-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  27. decoding-results/greedy_search/errs-test-other-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  28. decoding-results/greedy_search/errs-test-other-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  29. decoding-results/greedy_search/errs-test-other-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  30. decoding-results/greedy_search/errs-test-other-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  31. decoding-results/greedy_search/errs-test-other-epoch-30-avg-13-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  32. decoding-results/greedy_search/errs-test-other-epoch-30-avg-14-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  33. decoding-results/greedy_search/errs-test-other-epoch-30-avg-15-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  34. decoding-results/greedy_search/errs-test-other-epoch-30-avg-16-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  35. decoding-results/greedy_search/errs-test-other-epoch-30-avg-17-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  36. decoding-results/greedy_search/errs-test-other-epoch-30-avg-18-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  37. decoding-results/greedy_search/errs-test-other-epoch-30-avg-19-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  38. decoding-results/greedy_search/errs-test-other-epoch-30-avg-2-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  39. decoding-results/greedy_search/errs-test-other-epoch-30-avg-20-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  40. decoding-results/greedy_search/errs-test-other-epoch-30-avg-3-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  41. decoding-results/greedy_search/errs-test-other-epoch-30-avg-4-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  42. decoding-results/greedy_search/errs-test-other-epoch-30-avg-5-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  43. decoding-results/greedy_search/errs-test-other-epoch-30-avg-6-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  44. decoding-results/greedy_search/errs-test-other-epoch-30-avg-7-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  45. decoding-results/greedy_search/errs-test-other-epoch-30-avg-8-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  46. decoding-results/greedy_search/errs-test-other-epoch-30-avg-9-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
  47. decoding-results/greedy_search/log-decode-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model-2023-05-03-11-35-18 +31 -0
  48. decoding-results/greedy_search/log-decode-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model-2023-05-03-11-52-51 +31 -0
  49. decoding-results/greedy_search/log-decode-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model-2023-05-03-11-54-47 +31 -0
  50. decoding-results/greedy_search/log-decode-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model-2023-05-03-11-56-45 +26 -0
data/lang_bpe_500/L.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1b88996f918737fba67fbd29152018b51a537c16ce0718a2b43d5140583224e
3
+ size 19025703
data/lang_bpe_500/Linv.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbc8b3687a1b8f0811a84106b3b310642566c7b1bc282a929878f9269507a2c6
3
+ size 19025703
data/lang_bpe_500/bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c53433de083c4a6ad12d034550ef22de68cec62c4f58932a7b6b8b2f1e743fa5
3
+ size 244865
data/lang_bpe_500/lexicon.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/lang_bpe_500/tokens.txt ADDED
@@ -0,0 +1,502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <blk> 0
2
+ <sos/eos> 1
3
+ <unk> 2
4
+ S 3
5
+ ▁THE 4
6
+ ▁A 5
7
+ T 6
8
+ ▁AND 7
9
+ ED 8
10
+ ▁OF 9
11
+ ▁TO 10
12
+ E 11
13
+ D 12
14
+ N 13
15
+ ING 14
16
+ ▁IN 15
17
+ Y 16
18
+ M 17
19
+ C 18
20
+ ▁I 19
21
+ A 20
22
+ P 21
23
+ ▁HE 22
24
+ R 23
25
+ O 24
26
+ L 25
27
+ RE 26
28
+ I 27
29
+ U 28
30
+ ER 29
31
+ ▁IT 30
32
+ LY 31
33
+ ▁THAT 32
34
+ ▁WAS 33
35
+ ▁ 34
36
+ ▁S 35
37
+ AR 36
38
+ ▁BE 37
39
+ F 38
40
+ ▁C 39
41
+ IN 40
42
+ B 41
43
+ ▁FOR 42
44
+ OR 43
45
+ LE 44
46
+ ' 45
47
+ ▁HIS 46
48
+ ▁YOU 47
49
+ AL 48
50
+ ▁RE 49
51
+ V 50
52
+ ▁B 51
53
+ G 52
54
+ RI 53
55
+ ▁E 54
56
+ ▁WITH 55
57
+ ▁T 56
58
+ ▁AS 57
59
+ LL 58
60
+ ▁P 59
61
+ ▁HER 60
62
+ ST 61
63
+ ▁HAD 62
64
+ ▁SO 63
65
+ ▁F 64
66
+ W 65
67
+ CE 66
68
+ ▁IS 67
69
+ ND 68
70
+ ▁NOT 69
71
+ TH 70
72
+ ▁BUT 71
73
+ EN 72
74
+ ▁SHE 73
75
+ ▁ON 74
76
+ VE 75
77
+ ON 76
78
+ SE 77
79
+ ▁DE 78
80
+ UR 79
81
+ ▁G 80
82
+ CH 81
83
+ K 82
84
+ TER 83
85
+ ▁AT 84
86
+ IT 85
87
+ ▁ME 86
88
+ RO 87
89
+ NE 88
90
+ RA 89
91
+ ES 90
92
+ IL 91
93
+ NG 92
94
+ IC 93
95
+ ▁NO 94
96
+ ▁HIM 95
97
+ ENT 96
98
+ IR 97
99
+ ▁WE 98
100
+ H 99
101
+ ▁DO 100
102
+ ▁ALL 101
103
+ ▁HAVE 102
104
+ LO 103
105
+ ▁BY 104
106
+ ▁MY 105
107
+ ▁MO 106
108
+ ▁THIS 107
109
+ LA 108
110
+ ▁ST 109
111
+ ▁WHICH 110
112
+ ▁CON 111
113
+ ▁THEY 112
114
+ CK 113
115
+ TE 114
116
+ ▁SAID 115
117
+ ▁FROM 116
118
+ ▁GO 117
119
+ ▁WHO 118
120
+ ▁TH 119
121
+ ▁OR 120
122
+ ▁D 121
123
+ ▁W 122
124
+ VER 123
125
+ LI 124
126
+ ▁SE 125
127
+ ▁ONE 126
128
+ ▁CA 127
129
+ ▁AN 128
130
+ ▁LA 129
131
+ ▁WERE 130
132
+ EL 131
133
+ ▁HA 132
134
+ ▁MAN 133
135
+ ▁FA 134
136
+ ▁EX 135
137
+ AD 136
138
+ ▁SU 137
139
+ RY 138
140
+ ▁MI 139
141
+ AT 140
142
+ ▁BO 141
143
+ ▁WHEN 142
144
+ AN 143
145
+ THER 144
146
+ PP 145
147
+ ATION 146
148
+ ▁FI 147
149
+ ▁WOULD 148
150
+ ▁PRO 149
151
+ OW 150
152
+ ET 151
153
+ ▁O 152
154
+ ▁THERE 153
155
+ ▁HO 154
156
+ ION 155
157
+ ▁WHAT 156
158
+ ▁FE 157
159
+ ▁PA 158
160
+ US 159
161
+ MENT 160
162
+ ▁MA 161
163
+ UT 162
164
+ ▁OUT 163
165
+ ▁THEIR 164
166
+ ▁IF 165
167
+ ▁LI 166
168
+ ▁K 167
169
+ ▁WILL 168
170
+ ▁ARE 169
171
+ ID 170
172
+ ▁RO 171
173
+ DE 172
174
+ TION 173
175
+ ▁WA 174
176
+ PE 175
177
+ ▁UP 176
178
+ ▁SP 177
179
+ ▁PO 178
180
+ IGHT 179
181
+ ▁UN 180
182
+ RU 181
183
+ ▁LO 182
184
+ AS 183
185
+ OL 184
186
+ ▁LE 185
187
+ ▁BEEN 186
188
+ ▁SH 187
189
+ ▁RA 188
190
+ ▁SEE 189
191
+ KE 190
192
+ UL 191
193
+ TED 192
194
+ ▁SA 193
195
+ UN 194
196
+ UND 195
197
+ ANT 196
198
+ ▁NE 197
199
+ IS 198
200
+ ▁THEM 199
201
+ CI 200
202
+ GE 201
203
+ ▁COULD 202
204
+ ▁DIS 203
205
+ OM 204
206
+ ISH 205
207
+ HE 206
208
+ EST 207
209
+ ▁SOME 208
210
+ ENCE 209
211
+ ITY 210
212
+ IVE 211
213
+ ▁US 212
214
+ ▁MORE 213
215
+ ▁EN 214
216
+ ARD 215
217
+ ATE 216
218
+ ▁YOUR 217
219
+ ▁INTO 218
220
+ ▁KNOW 219
221
+ ▁CO 220
222
+ ANCE 221
223
+ ▁TIME 222
224
+ ▁WI 223
225
+ ▁YE 224
226
+ AGE 225
227
+ ▁NOW 226
228
+ TI 227
229
+ FF 228
230
+ ABLE 229
231
+ ▁VERY 230
232
+ ▁LIKE 231
233
+ AM 232
234
+ HI 233
235
+ Z 234
236
+ ▁OTHER 235
237
+ ▁THAN 236
238
+ ▁LITTLE 237
239
+ ▁DID 238
240
+ ▁LOOK 239
241
+ TY 240
242
+ ERS 241
243
+ ▁CAN 242
244
+ ▁CHA 243
245
+ ▁AR 244
246
+ X 245
247
+ FUL 246
248
+ UGH 247
249
+ ▁BA 248
250
+ ▁DAY 249
251
+ ▁ABOUT 250
252
+ TEN 251
253
+ IM 252
254
+ ▁ANY 253
255
+ ▁PRE 254
256
+ ▁OVER 255
257
+ IES 256
258
+ NESS 257
259
+ ME 258
260
+ BLE 259
261
+ ▁M 260
262
+ ROW 261
263
+ ▁HAS 262
264
+ ▁GREAT 263
265
+ ▁VI 264
266
+ TA 265
267
+ ▁AFTER 266
268
+ PER 267
269
+ ▁AGAIN 268
270
+ HO 269
271
+ SH 270
272
+ ▁UPON 271
273
+ ▁DI 272
274
+ ▁HAND 273
275
+ ▁COM 274
276
+ IST 275
277
+ TURE 276
278
+ ▁STA 277
279
+ ▁THEN 278
280
+ ▁SHOULD 279
281
+ ▁GA 280
282
+ OUS 281
283
+ OUR 282
284
+ ▁WELL 283
285
+ ▁ONLY 284
286
+ MAN 285
287
+ ▁GOOD 286
288
+ ▁TWO 287
289
+ ▁MAR 288
290
+ ▁SAY 289
291
+ ▁HU 290
292
+ TING 291
293
+ ▁OUR 292
294
+ RESS 293
295
+ ▁DOWN 294
296
+ IOUS 295
297
+ ▁BEFORE 296
298
+ ▁DA 297
299
+ ▁NA 298
300
+ QUI 299
301
+ ▁MADE 300
302
+ ▁EVERY 301
303
+ ▁OLD 302
304
+ ▁EVEN 303
305
+ IG 304
306
+ ▁COME 305
307
+ ▁GRA 306
308
+ ▁RI 307
309
+ ▁LONG 308
310
+ OT 309
311
+ SIDE 310
312
+ WARD 311
313
+ ▁FO 312
314
+ ▁WHERE 313
315
+ MO 314
316
+ LESS 315
317
+ ▁SC 316
318
+ ▁MUST 317
319
+ ▁NEVER 318
320
+ ▁HOW 319
321
+ ▁CAME 320
322
+ ▁SUCH 321
323
+ ▁RU 322
324
+ ▁TAKE 323
325
+ ▁WO 324
326
+ ▁CAR 325
327
+ UM 326
328
+ AK 327
329
+ ▁THINK 328
330
+ ▁MUCH 329
331
+ ▁MISTER 330
332
+ ▁MAY 331
333
+ ▁JO 332
334
+ ▁WAY 333
335
+ ▁COMP 334
336
+ ▁THOUGHT 335
337
+ ▁STO 336
338
+ ▁MEN 337
339
+ ▁BACK 338
340
+ ▁DON 339
341
+ J 340
342
+ ▁LET 341
343
+ ▁TRA 342
344
+ ▁FIRST 343
345
+ ▁JUST 344
346
+ ▁VA 345
347
+ ▁OWN 346
348
+ ▁PLA 347
349
+ ▁MAKE 348
350
+ ATED 349
351
+ ▁HIMSELF 350
352
+ ▁WENT 351
353
+ ▁PI 352
354
+ GG 353
355
+ RING 354
356
+ ▁DU 355
357
+ ▁MIGHT 356
358
+ ▁PART 357
359
+ ▁GIVE 358
360
+ ▁IMP 359
361
+ ▁BU 360
362
+ ▁PER 361
363
+ ▁PLACE 362
364
+ ▁HOUSE 363
365
+ ▁THROUGH 364
366
+ IAN 365
367
+ ▁SW 366
368
+ ▁UNDER 367
369
+ QUE 368
370
+ ▁AWAY 369
371
+ ▁LOVE 370
372
+ QUA 371
373
+ ▁LIFE 372
374
+ ▁GET 373
375
+ ▁WITHOUT 374
376
+ ▁PASS 375
377
+ ▁TURN 376
378
+ IGN 377
379
+ ▁HEAD 378
380
+ ▁MOST 379
381
+ ▁THOSE 380
382
+ ▁SHALL 381
383
+ ▁EYES 382
384
+ ▁COL 383
385
+ ▁STILL 384
386
+ ▁NIGHT 385
387
+ ▁NOTHING 386
388
+ ITION 387
389
+ HA 388
390
+ ▁TELL 389
391
+ ▁WORK 390
392
+ ▁LAST 391
393
+ ▁NEW 392
394
+ ▁FACE 393
395
+ ▁HI 394
396
+ ▁WORD 395
397
+ ▁FOUND 396
398
+ ▁COUNT 397
399
+ ▁OB 398
400
+ ▁WHILE 399
401
+ ▁SHA 400
402
+ ▁MEAN 401
403
+ ▁SAW 402
404
+ ▁PEOPLE 403
405
+ ▁FRIEND 404
406
+ ▁THREE 405
407
+ ▁ROOM 406
408
+ ▁SAME 407
409
+ ▁THOUGH 408
410
+ ▁RIGHT 409
411
+ ▁CHILD 410
412
+ ▁FATHER 411
413
+ ▁ANOTHER 412
414
+ ▁HEART 413
415
+ ▁WANT 414
416
+ ▁TOOK 415
417
+ OOK 416
418
+ ▁LIGHT 417
419
+ ▁MISSUS 418
420
+ ▁OPEN 419
421
+ ▁JU 420
422
+ ▁ASKED 421
423
+ PORT 422
424
+ ▁LEFT 423
425
+ ▁JA 424
426
+ ▁WORLD 425
427
+ ▁HOME 426
428
+ ▁WHY 427
429
+ ▁ALWAYS 428
430
+ ▁ANSWER 429
431
+ ▁SEEMED 430
432
+ ▁SOMETHING 431
433
+ ▁GIRL 432
434
+ ▁BECAUSE 433
435
+ ▁NAME 434
436
+ ▁TOLD 435
437
+ ▁NI 436
438
+ ▁HIGH 437
439
+ IZE 438
440
+ ▁WOMAN 439
441
+ ▁FOLLOW 440
442
+ ▁RETURN 441
443
+ ▁KNEW 442
444
+ ▁EACH 443
445
+ ▁KIND 444
446
+ ▁JE 445
447
+ ▁ACT 446
448
+ ▁LU 447
449
+ ▁CERTAIN 448
450
+ ▁YEARS 449
451
+ ▁QUITE 450
452
+ ▁APPEAR 451
453
+ ▁BETTER 452
454
+ ▁HALF 453
455
+ ▁PRESENT 454
456
+ ▁PRINCE 455
457
+ SHIP 456
458
+ ▁ALSO 457
459
+ ▁BEGAN 458
460
+ ▁HAVING 459
461
+ ▁ENOUGH 460
462
+ ▁PERSON 461
463
+ ▁LADY 462
464
+ ▁WHITE 463
465
+ ▁COURSE 464
466
+ ▁VOICE 465
467
+ ▁SPEAK 466
468
+ ▁POWER 467
469
+ ▁MORNING 468
470
+ ▁BETWEEN 469
471
+ ▁AMONG 470
472
+ ▁KEEP 471
473
+ ▁WALK 472
474
+ ▁MATTER 473
475
+ ▁TEA 474
476
+ ▁BELIEVE 475
477
+ ▁SMALL 476
478
+ ▁TALK 477
479
+ ▁FELT 478
480
+ ▁HORSE 479
481
+ ▁MYSELF 480
482
+ ▁SIX 481
483
+ ▁HOWEVER 482
484
+ ▁FULL 483
485
+ ▁HERSELF 484
486
+ ▁POINT 485
487
+ ▁STOOD 486
488
+ ▁HUNDRED 487
489
+ ▁ALMOST 488
490
+ ▁SINCE 489
491
+ ▁LARGE 490
492
+ ▁LEAVE 491
493
+ ▁PERHAPS 492
494
+ ▁DARK 493
495
+ ▁SUDDEN 494
496
+ ▁REPLIED 495
497
+ ▁ANYTHING 496
498
+ ▁WONDER 497
499
+ ▁UNTIL 498
500
+ Q 499
501
+ #0 500
502
+ #1 501
data/lang_bpe_500/words.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-13-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-14-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-15-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-16-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-17-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-18-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-19-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-2-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-20-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-3-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-4-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-5-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-6-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-7-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-8-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-clean-epoch-30-avg-9-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-13-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-14-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-15-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-16-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-17-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-18-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-19-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-2-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-20-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-3-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-4-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-5-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-6-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-7-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-8-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/errs-test-other-epoch-30-avg-9-context-2-max-sym-per-frame-1-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding-results/greedy_search/log-decode-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model-2023-05-03-11-35-18 ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-05-03 11:35:18,697 INFO [decode.py:777] Decoding started
2
+ 2023-05-03 11:35:18,697 INFO [decode.py:783] Device: cuda:0
3
+ 2023-05-03 11:35:18,699 INFO [decode.py:793] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.4', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a23383c5a381713b51e9014f3f05d096f8aceec3', 'k2-git-date': 'Wed Apr 26 15:33:33 2023', 'lhotse-version': '1.14.0.dev+git.b61b917.dirty', 'torch-version': '1.13.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.1', 'icefall-git-branch': 'master', 'icefall-git-sha1': '45c13e9-dirty', 'icefall-git-date': 'Mon Apr 24 15:00:02 2023', 'icefall-path': '/k2-dev/yangyifan/icefall-master', 'k2-path': '/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.4.dev20230427+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/lhotse-1.14.0.dev0+git.b61b917.dirty-py3.10.egg/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 30, 'iter': 0, 'avg': 1, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7/exp_multidataset'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'use_shallow_fusion': False, 'lm_type': 'rnn', 'lm_scale': 0.3, 'tokens_ngram': 3, 'backoff_id': 500, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'full_libri': True, 'manifest_dir': PosixPath('data/fbank'), 'cv_manifest_dir': PosixPath('data/en/fbank'), 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures', 'lm_vocab_size': 500, 'lm_epoch': 7, 'lm_avg': 1, 'lm_exp_dir': None, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 3, 'rnn_lm_tie_weights': True, 'transformer_lm_exp_dir': None, 'transformer_lm_dim_feedforward': 2048, 'transformer_lm_encoder_dim': 768, 'transformer_lm_embedding_dim': 768, 'transformer_lm_nhead': 8, 'transformer_lm_num_layers': 16, 'transformer_lm_tie_weights': True, 'res_dir': PosixPath('pruned_transducer_stateless7/exp_multidataset/greedy_search'), 'suffix': 'epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-05-03 11:35:18,700 INFO [decode.py:795] About to create model
5
+ 2023-05-03 11:35:19,508 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-05-03 11:35:19,521 INFO [decode.py:862] Calculating the averaged model over epoch range from 29 (excluded) to 30
7
+ 2023-05-03 11:35:33,975 INFO [decode.py:924] Number of model parameters: 70369391
8
+ 2023-05-03 11:35:33,975 INFO [asr_datamodule.py:449] About to get test-clean cuts
9
+ 2023-05-03 11:35:33,980 INFO [asr_datamodule.py:456] About to get test-other cuts
10
+ 2023-05-03 11:35:38,422 INFO [decode.py:674] batch 0/?, cuts processed until now is 44
11
+ 2023-05-03 11:36:27,968 INFO [decode.py:688] The transcripts are stored in pruned_transducer_stateless7/exp_multidataset/greedy_search/recogs-test-clean-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
12
+ 2023-05-03 11:36:28,062 INFO [utils.py:558] [test-clean-greedy_search] %WER 1.90% [999 / 52576, 93 ins, 118 del, 788 sub ]
13
+ 2023-05-03 11:36:28,256 INFO [decode.py:699] Wrote detailed error stats to pruned_transducer_stateless7/exp_multidataset/greedy_search/errs-test-clean-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
14
+ 2023-05-03 11:36:28,256 INFO [decode.py:713]
15
+ For test-clean, WER of different settings are:
16
+ greedy_search 1.9 best for test-clean
17
+
18
+ 2023-05-03 11:36:30,075 INFO [decode.py:674] batch 0/?, cuts processed until now is 52
19
+ 2023-05-03 11:36:50,980 INFO [zipformer.py:1454] attn_weights_entropy = tensor([3.7565, 3.6993, 3.8258, 3.8986, 3.9204, 3.8740, 3.8114, 3.9465],
20
+ device='cuda:0'), covar=tensor([0.1241, 0.0872, 0.0934, 0.0534, 0.0523, 0.0545, 0.0672, 0.0753],
21
+ device='cuda:0'), in_proj_covar=tensor([0.0686, 0.0833, 0.0962, 0.0853, 0.0646, 0.0669, 0.0708, 0.0823],
22
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002],
23
+ device='cuda:0')
24
+ 2023-05-03 11:37:15,613 INFO [decode.py:688] The transcripts are stored in pruned_transducer_stateless7/exp_multidataset/greedy_search/recogs-test-other-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
25
+ 2023-05-03 11:37:15,708 INFO [utils.py:558] [test-other-greedy_search] %WER 4.14% [2166 / 52343, 218 ins, 218 del, 1730 sub ]
26
+ 2023-05-03 11:37:15,905 INFO [decode.py:699] Wrote detailed error stats to pruned_transducer_stateless7/exp_multidataset/greedy_search/errs-test-other-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
27
+ 2023-05-03 11:37:15,905 INFO [decode.py:713]
28
+ For test-other, WER of different settings are:
29
+ greedy_search 4.14 best for test-other
30
+
31
+ 2023-05-03 11:37:15,906 INFO [decode.py:958] Done!
decoding-results/greedy_search/log-decode-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model-2023-05-03-11-52-51 ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-05-03 11:52:51,327 INFO [decode.py:777] Decoding started
2
+ 2023-05-03 11:52:51,328 INFO [decode.py:783] Device: cuda:0
3
+ 2023-05-03 11:52:51,330 INFO [decode.py:793] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.4', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a23383c5a381713b51e9014f3f05d096f8aceec3', 'k2-git-date': 'Wed Apr 26 15:33:33 2023', 'lhotse-version': '1.14.0.dev+git.b61b917.dirty', 'torch-version': '1.13.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.1', 'icefall-git-branch': 'master', 'icefall-git-sha1': '45c13e9-dirty', 'icefall-git-date': 'Mon Apr 24 15:00:02 2023', 'icefall-path': '/k2-dev/yangyifan/icefall-master', 'k2-path': '/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.4.dev20230427+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/lhotse-1.14.0.dev0+git.b61b917.dirty-py3.10.egg/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 30, 'iter': 0, 'avg': 10, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7/exp_multidataset'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'use_shallow_fusion': False, 'lm_type': 'rnn', 'lm_scale': 0.3, 'tokens_ngram': 3, 'backoff_id': 500, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'full_libri': True, 'manifest_dir': PosixPath('data/fbank'), 'cv_manifest_dir': PosixPath('data/en/fbank'), 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures', 'lm_vocab_size': 500, 'lm_epoch': 7, 'lm_avg': 1, 'lm_exp_dir': None, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 3, 'rnn_lm_tie_weights': True, 'transformer_lm_exp_dir': None, 'transformer_lm_dim_feedforward': 2048, 'transformer_lm_encoder_dim': 768, 'transformer_lm_embedding_dim': 768, 'transformer_lm_nhead': 8, 'transformer_lm_num_layers': 16, 'transformer_lm_tie_weights': True, 'res_dir': PosixPath('pruned_transducer_stateless7/exp_multidataset/greedy_search'), 'suffix': 'epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-05-03 11:52:51,331 INFO [decode.py:795] About to create model
5
+ 2023-05-03 11:52:52,074 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-05-03 11:52:52,088 INFO [decode.py:862] Calculating the averaged model over epoch range from 20 (excluded) to 30
7
+ 2023-05-03 11:53:01,933 INFO [decode.py:924] Number of model parameters: 70369391
8
+ 2023-05-03 11:53:01,933 INFO [asr_datamodule.py:449] About to get test-clean cuts
9
+ 2023-05-03 11:53:01,936 INFO [asr_datamodule.py:456] About to get test-other cuts
10
+ 2023-05-03 11:53:06,275 INFO [decode.py:674] batch 0/?, cuts processed until now is 44
11
+ 2023-05-03 11:53:57,261 INFO [decode.py:688] The transcripts are stored in pruned_transducer_stateless7/exp_multidataset/greedy_search/recogs-test-clean-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
12
+ 2023-05-03 11:53:57,361 INFO [utils.py:558] [test-clean-greedy_search] %WER 1.91% [1004 / 52576, 82 ins, 114 del, 808 sub ]
13
+ 2023-05-03 11:53:57,558 INFO [decode.py:699] Wrote detailed error stats to pruned_transducer_stateless7/exp_multidataset/greedy_search/errs-test-clean-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
14
+ 2023-05-03 11:53:57,559 INFO [decode.py:713]
15
+ For test-clean, WER of different settings are:
16
+ greedy_search 1.91 best for test-clean
17
+
18
+ 2023-05-03 11:53:59,165 INFO [decode.py:674] batch 0/?, cuts processed until now is 52
19
+ 2023-05-03 11:54:17,088 INFO [zipformer.py:1454] attn_weights_entropy = tensor([2.5990, 1.8912, 2.3383, 2.5715, 2.5570, 2.8837, 2.2091, 2.8664],
20
+ device='cuda:0'), covar=tensor([0.0272, 0.0560, 0.0373, 0.0355, 0.0375, 0.0256, 0.0506, 0.0183],
21
+ device='cuda:0'), in_proj_covar=tensor([0.0189, 0.0191, 0.0178, 0.0183, 0.0198, 0.0156, 0.0196, 0.0154],
22
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002],
23
+ device='cuda:0')
24
+ 2023-05-03 11:54:42,627 INFO [decode.py:688] The transcripts are stored in pruned_transducer_stateless7/exp_multidataset/greedy_search/recogs-test-other-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
25
+ 2023-05-03 11:54:42,716 INFO [utils.py:558] [test-other-greedy_search] %WER 4.10% [2147 / 52343, 196 ins, 211 del, 1740 sub ]
26
+ 2023-05-03 11:54:42,924 INFO [decode.py:699] Wrote detailed error stats to pruned_transducer_stateless7/exp_multidataset/greedy_search/errs-test-other-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
27
+ 2023-05-03 11:54:42,924 INFO [decode.py:713]
28
+ For test-other, WER of different settings are:
29
+ greedy_search 4.1 best for test-other
30
+
31
+ 2023-05-03 11:54:42,924 INFO [decode.py:958] Done!
decoding-results/greedy_search/log-decode-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model-2023-05-03-11-54-47 ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-05-03 11:54:47,402 INFO [decode.py:777] Decoding started
2
+ 2023-05-03 11:54:47,402 INFO [decode.py:783] Device: cuda:0
3
+ 2023-05-03 11:54:47,405 INFO [decode.py:793] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.4', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a23383c5a381713b51e9014f3f05d096f8aceec3', 'k2-git-date': 'Wed Apr 26 15:33:33 2023', 'lhotse-version': '1.14.0.dev+git.b61b917.dirty', 'torch-version': '1.13.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.1', 'icefall-git-branch': 'master', 'icefall-git-sha1': '45c13e9-dirty', 'icefall-git-date': 'Mon Apr 24 15:00:02 2023', 'icefall-path': '/k2-dev/yangyifan/icefall-master', 'k2-path': '/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.4.dev20230427+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/lhotse-1.14.0.dev0+git.b61b917.dirty-py3.10.egg/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 30, 'iter': 0, 'avg': 11, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7/exp_multidataset'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'use_shallow_fusion': False, 'lm_type': 'rnn', 'lm_scale': 0.3, 'tokens_ngram': 3, 'backoff_id': 500, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'full_libri': True, 'manifest_dir': PosixPath('data/fbank'), 'cv_manifest_dir': PosixPath('data/en/fbank'), 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures', 'lm_vocab_size': 500, 'lm_epoch': 7, 'lm_avg': 1, 'lm_exp_dir': None, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 3, 'rnn_lm_tie_weights': True, 'transformer_lm_exp_dir': None, 'transformer_lm_dim_feedforward': 2048, 'transformer_lm_encoder_dim': 768, 'transformer_lm_embedding_dim': 768, 'transformer_lm_nhead': 8, 'transformer_lm_num_layers': 16, 'transformer_lm_tie_weights': True, 'res_dir': PosixPath('pruned_transducer_stateless7/exp_multidataset/greedy_search'), 'suffix': 'epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-05-03 11:54:47,405 INFO [decode.py:795] About to create model
5
+ 2023-05-03 11:54:48,108 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-05-03 11:54:48,121 INFO [decode.py:862] Calculating the averaged model over epoch range from 19 (excluded) to 30
7
+ 2023-05-03 11:54:57,760 INFO [decode.py:924] Number of model parameters: 70369391
8
+ 2023-05-03 11:54:57,760 INFO [asr_datamodule.py:449] About to get test-clean cuts
9
+ 2023-05-03 11:54:57,762 INFO [asr_datamodule.py:456] About to get test-other cuts
10
+ 2023-05-03 11:55:01,518 INFO [decode.py:674] batch 0/?, cuts processed until now is 44
11
+ 2023-05-03 11:55:31,299 INFO [zipformer.py:1454] attn_weights_entropy = tensor([4.6494, 4.7852, 3.8399, 5.2357, 4.2436, 5.1545, 3.9862, 4.2959],
12
+ device='cuda:0'), covar=tensor([0.0212, 0.0254, 0.1094, 0.0211, 0.0551, 0.0406, 0.1051, 0.0489],
13
+ device='cuda:0'), in_proj_covar=tensor([0.0166, 0.0173, 0.0191, 0.0162, 0.0173, 0.0214, 0.0199, 0.0176],
14
+ device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0004, 0.0003, 0.0004, 0.0004, 0.0004, 0.0004],
15
+ device='cuda:0')
16
+ 2023-05-03 11:55:50,101 INFO [decode.py:688] The transcripts are stored in pruned_transducer_stateless7/exp_multidataset/greedy_search/recogs-test-clean-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model.txt
17
+ 2023-05-03 11:55:50,194 INFO [utils.py:558] [test-clean-greedy_search] %WER 1.91% [1003 / 52576, 82 ins, 116 del, 805 sub ]
18
+ 2023-05-03 11:55:50,397 INFO [decode.py:699] Wrote detailed error stats to pruned_transducer_stateless7/exp_multidataset/greedy_search/errs-test-clean-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model.txt
19
+ 2023-05-03 11:55:50,398 INFO [decode.py:713]
20
+ For test-clean, WER of different settings are:
21
+ greedy_search 1.91 best for test-clean
22
+
23
+ 2023-05-03 11:55:52,206 INFO [decode.py:674] batch 0/?, cuts processed until now is 52
24
+ 2023-05-03 11:56:40,999 INFO [decode.py:688] The transcripts are stored in pruned_transducer_stateless7/exp_multidataset/greedy_search/recogs-test-other-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model.txt
25
+ 2023-05-03 11:56:41,096 INFO [utils.py:558] [test-other-greedy_search] %WER 4.12% [2155 / 52343, 198 ins, 209 del, 1748 sub ]
26
+ 2023-05-03 11:56:41,298 INFO [decode.py:699] Wrote detailed error stats to pruned_transducer_stateless7/exp_multidataset/greedy_search/errs-test-other-epoch-30-avg-11-context-2-max-sym-per-frame-1-use-averaged-model.txt
27
+ 2023-05-03 11:56:41,299 INFO [decode.py:713]
28
+ For test-other, WER of different settings are:
29
+ greedy_search 4.12 best for test-other
30
+
31
+ 2023-05-03 11:56:41,299 INFO [decode.py:958] Done!
decoding-results/greedy_search/log-decode-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model-2023-05-03-11-56-45 ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-05-03 11:56:45,724 INFO [decode.py:777] Decoding started
2
+ 2023-05-03 11:56:45,725 INFO [decode.py:783] Device: cuda:0
3
+ 2023-05-03 11:56:45,727 INFO [decode.py:793] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.4', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a23383c5a381713b51e9014f3f05d096f8aceec3', 'k2-git-date': 'Wed Apr 26 15:33:33 2023', 'lhotse-version': '1.14.0.dev+git.b61b917.dirty', 'torch-version': '1.13.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.1', 'icefall-git-branch': 'master', 'icefall-git-sha1': '45c13e9-dirty', 'icefall-git-date': 'Mon Apr 24 15:00:02 2023', 'icefall-path': '/k2-dev/yangyifan/icefall-master', 'k2-path': '/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.4.dev20230427+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/lhotse-1.14.0.dev0+git.b61b917.dirty-py3.10.egg/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-mlpzc', 'IP address': '10.177.22.19'}, 'epoch': 30, 'iter': 0, 'avg': 12, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7/exp_multidataset'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'use_shallow_fusion': False, 'lm_type': 'rnn', 'lm_scale': 0.3, 'tokens_ngram': 3, 'backoff_id': 500, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'full_libri': True, 'manifest_dir': PosixPath('data/fbank'), 'cv_manifest_dir': PosixPath('data/en/fbank'), 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures', 'lm_vocab_size': 500, 'lm_epoch': 7, 'lm_avg': 1, 'lm_exp_dir': None, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 3, 'rnn_lm_tie_weights': True, 'transformer_lm_exp_dir': None, 'transformer_lm_dim_feedforward': 2048, 'transformer_lm_encoder_dim': 768, 'transformer_lm_embedding_dim': 768, 'transformer_lm_nhead': 8, 'transformer_lm_num_layers': 16, 'transformer_lm_tie_weights': True, 'res_dir': PosixPath('pruned_transducer_stateless7/exp_multidataset/greedy_search'), 'suffix': 'epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
4
+ 2023-05-03 11:56:45,727 INFO [decode.py:795] About to create model
5
+ 2023-05-03 11:56:46,472 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
6
+ 2023-05-03 11:56:46,486 INFO [decode.py:862] Calculating the averaged model over epoch range from 18 (excluded) to 30
7
+ 2023-05-03 11:56:56,379 INFO [decode.py:924] Number of model parameters: 70369391
8
+ 2023-05-03 11:56:56,380 INFO [asr_datamodule.py:449] About to get test-clean cuts
9
+ 2023-05-03 11:56:56,383 INFO [asr_datamodule.py:456] About to get test-other cuts
10
+ 2023-05-03 11:57:00,304 INFO [decode.py:674] batch 0/?, cuts processed until now is 44
11
+ 2023-05-03 11:57:53,407 INFO [decode.py:688] The transcripts are stored in pruned_transducer_stateless7/exp_multidataset/greedy_search/recogs-test-clean-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model.txt
12
+ 2023-05-03 11:57:53,502 INFO [utils.py:558] [test-clean-greedy_search] %WER 1.90% [1001 / 52576, 79 ins, 116 del, 806 sub ]
13
+ 2023-05-03 11:57:53,702 INFO [decode.py:699] Wrote detailed error stats to pruned_transducer_stateless7/exp_multidataset/greedy_search/errs-test-clean-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model.txt
14
+ 2023-05-03 11:57:53,703 INFO [decode.py:713]
15
+ For test-clean, WER of different settings are:
16
+ greedy_search 1.9 best for test-clean
17
+
18
+ 2023-05-03 11:57:55,319 INFO [decode.py:674] batch 0/?, cuts processed until now is 52
19
+ 2023-05-03 11:58:41,418 INFO [decode.py:688] The transcripts are stored in pruned_transducer_stateless7/exp_multidataset/greedy_search/recogs-test-other-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model.txt
20
+ 2023-05-03 11:58:41,520 INFO [utils.py:558] [test-other-greedy_search] %WER 4.13% [2161 / 52343, 203 ins, 208 del, 1750 sub ]
21
+ 2023-05-03 11:58:41,728 INFO [decode.py:699] Wrote detailed error stats to pruned_transducer_stateless7/exp_multidataset/greedy_search/errs-test-other-epoch-30-avg-12-context-2-max-sym-per-frame-1-use-averaged-model.txt
22
+ 2023-05-03 11:58:41,729 INFO [decode.py:713]
23
+ For test-other, WER of different settings are:
24
+ greedy_search 4.13 best for test-other
25
+
26
+ 2023-05-03 11:58:41,729 INFO [decode.py:958] Done!