|
import os |
|
import re |
|
import shutil |
|
import json |
|
|
|
|
|
import torch |
|
import tqdm |
|
|
|
from modules import shared, images, sd_models, sd_vae, sd_models_config |
|
from modules.ui_common import plaintext_to_html |
|
import gradio as gr |
|
import safetensors.torch |
|
|
|
|
|
def run_pnginfo(image): |
|
if image is None: |
|
return '', '', '' |
|
|
|
geninfo, items = images.read_info_from_image(image) |
|
items = {**{'parameters': geninfo}, **items} |
|
|
|
info = '' |
|
for key, text in items.items(): |
|
info += f""" |
|
<div> |
|
<p><b>{plaintext_to_html(str(key))}</b></p> |
|
<p>{plaintext_to_html(str(text))}</p> |
|
</div> |
|
""".strip()+"\n" |
|
|
|
if len(info) == 0: |
|
message = "Nothing found in the image." |
|
info = f"<div><p>{message}<p></div>" |
|
|
|
return '', geninfo, info |
|
|
|
|
|
def create_config(ckpt_result, config_source, a, b, c): |
|
def config(x): |
|
res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None |
|
return res if res != shared.sd_default_config else None |
|
|
|
if config_source == 0: |
|
cfg = config(a) or config(b) or config(c) |
|
elif config_source == 1: |
|
cfg = config(b) |
|
elif config_source == 2: |
|
cfg = config(c) |
|
else: |
|
cfg = None |
|
|
|
if cfg is None: |
|
return |
|
|
|
filename, _ = os.path.splitext(ckpt_result) |
|
checkpoint_filename = filename + ".yaml" |
|
|
|
print("Copying config:") |
|
print(" from:", cfg) |
|
print(" to:", checkpoint_filename) |
|
shutil.copyfile(cfg, checkpoint_filename) |
|
|
|
|
|
checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"] |
|
|
|
|
|
def to_half(tensor, enable): |
|
if enable and tensor.dtype == torch.float: |
|
return tensor.half() |
|
|
|
return tensor |
|
|
|
|
|
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata): |
|
shared.state.begin() |
|
shared.state.job = 'model-merge' |
|
|
|
def fail(message): |
|
shared.state.textinfo = message |
|
shared.state.end() |
|
return [*[gr.update() for _ in range(4)], message] |
|
|
|
def weighted_sum(theta0, theta1, alpha): |
|
return ((1 - alpha) * theta0) + (alpha * theta1) |
|
|
|
def get_difference(theta1, theta2): |
|
return theta1 - theta2 |
|
|
|
def add_difference(theta0, theta1_2_diff, alpha): |
|
return theta0 + (alpha * theta1_2_diff) |
|
|
|
def filename_weighted_sum(): |
|
a = primary_model_info.model_name |
|
b = secondary_model_info.model_name |
|
Ma = round(1 - multiplier, 2) |
|
Mb = round(multiplier, 2) |
|
|
|
return f"{Ma}({a}) + {Mb}({b})" |
|
|
|
def filename_add_difference(): |
|
a = primary_model_info.model_name |
|
b = secondary_model_info.model_name |
|
c = tertiary_model_info.model_name |
|
M = round(multiplier, 2) |
|
|
|
return f"{a} + {M}({b} - {c})" |
|
|
|
def filename_nothing(): |
|
return primary_model_info.model_name |
|
|
|
theta_funcs = { |
|
"Weighted sum": (filename_weighted_sum, None, weighted_sum), |
|
"Add difference": (filename_add_difference, get_difference, add_difference), |
|
"No interpolation": (filename_nothing, None, None), |
|
} |
|
filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method] |
|
shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0) |
|
|
|
if not primary_model_name: |
|
return fail("Failed: Merging requires a primary model.") |
|
|
|
primary_model_info = sd_models.checkpoints_list[primary_model_name] |
|
|
|
if theta_func2 and not secondary_model_name: |
|
return fail("Failed: Merging requires a secondary model.") |
|
|
|
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None |
|
|
|
if theta_func1 and not tertiary_model_name: |
|
return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.") |
|
|
|
tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None |
|
|
|
result_is_inpainting_model = False |
|
result_is_instruct_pix2pix_model = False |
|
|
|
if theta_func2: |
|
shared.state.textinfo = "Loading B" |
|
print(f"Loading {secondary_model_info.filename}...") |
|
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu') |
|
else: |
|
theta_1 = None |
|
|
|
if theta_func1: |
|
shared.state.textinfo = "Loading C" |
|
print(f"Loading {tertiary_model_info.filename}...") |
|
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu') |
|
|
|
shared.state.textinfo = 'Merging B and C' |
|
shared.state.sampling_steps = len(theta_1.keys()) |
|
for key in tqdm.tqdm(theta_1.keys()): |
|
if key in checkpoint_dict_skip_on_merge: |
|
continue |
|
|
|
if 'model' in key: |
|
if key in theta_2: |
|
t2 = theta_2.get(key, torch.zeros_like(theta_1[key])) |
|
theta_1[key] = theta_func1(theta_1[key], t2) |
|
else: |
|
theta_1[key] = torch.zeros_like(theta_1[key]) |
|
|
|
shared.state.sampling_step += 1 |
|
del theta_2 |
|
|
|
shared.state.nextjob() |
|
|
|
shared.state.textinfo = f"Loading {primary_model_info.filename}..." |
|
print(f"Loading {primary_model_info.filename}...") |
|
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu') |
|
|
|
print("Merging...") |
|
shared.state.textinfo = 'Merging A and B' |
|
shared.state.sampling_steps = len(theta_0.keys()) |
|
for key in tqdm.tqdm(theta_0.keys()): |
|
if theta_1 and 'model' in key and key in theta_1: |
|
|
|
if key in checkpoint_dict_skip_on_merge: |
|
continue |
|
|
|
a = theta_0[key] |
|
b = theta_1[key] |
|
|
|
|
|
|
|
|
|
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]: |
|
if a.shape[1] == 4 and b.shape[1] == 9: |
|
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.") |
|
if a.shape[1] == 4 and b.shape[1] == 8: |
|
raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.") |
|
|
|
if a.shape[1] == 8 and b.shape[1] == 4: |
|
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier) |
|
result_is_instruct_pix2pix_model = True |
|
else: |
|
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}" |
|
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier) |
|
result_is_inpainting_model = True |
|
else: |
|
theta_0[key] = theta_func2(a, b, multiplier) |
|
|
|
theta_0[key] = to_half(theta_0[key], save_as_half) |
|
|
|
shared.state.sampling_step += 1 |
|
|
|
del theta_1 |
|
|
|
bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None) |
|
if bake_in_vae_filename is not None: |
|
print(f"Baking in VAE from {bake_in_vae_filename}") |
|
shared.state.textinfo = 'Baking in VAE' |
|
vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu') |
|
|
|
for key in vae_dict.keys(): |
|
theta_0_key = 'first_stage_model.' + key |
|
if theta_0_key in theta_0: |
|
theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half) |
|
|
|
del vae_dict |
|
|
|
if save_as_half and not theta_func2: |
|
for key in theta_0.keys(): |
|
theta_0[key] = to_half(theta_0[key], save_as_half) |
|
|
|
if discard_weights: |
|
regex = re.compile(discard_weights) |
|
for key in list(theta_0): |
|
if re.search(regex, key): |
|
theta_0.pop(key, None) |
|
|
|
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path |
|
|
|
filename = filename_generator() if custom_name == '' else custom_name |
|
filename += ".inpainting" if result_is_inpainting_model else "" |
|
filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else "" |
|
filename += "." + checkpoint_format |
|
|
|
output_modelname = os.path.join(ckpt_dir, filename) |
|
|
|
shared.state.nextjob() |
|
shared.state.textinfo = "Saving" |
|
print(f"Saving to {output_modelname}...") |
|
|
|
metadata = None |
|
|
|
if save_metadata: |
|
metadata = {"format": "pt"} |
|
|
|
merge_recipe = { |
|
"type": "webui", |
|
"primary_model_hash": primary_model_info.sha256, |
|
"secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None, |
|
"tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None, |
|
"interp_method": interp_method, |
|
"multiplier": multiplier, |
|
"save_as_half": save_as_half, |
|
"custom_name": custom_name, |
|
"config_source": config_source, |
|
"bake_in_vae": bake_in_vae, |
|
"discard_weights": discard_weights, |
|
"is_inpainting": result_is_inpainting_model, |
|
"is_instruct_pix2pix": result_is_instruct_pix2pix_model |
|
} |
|
metadata["sd_merge_recipe"] = json.dumps(merge_recipe) |
|
|
|
sd_merge_models = {} |
|
|
|
def add_model_metadata(checkpoint_info): |
|
checkpoint_info.calculate_shorthash() |
|
sd_merge_models[checkpoint_info.sha256] = { |
|
"name": checkpoint_info.name, |
|
"legacy_hash": checkpoint_info.hash, |
|
"sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None) |
|
} |
|
|
|
sd_merge_models.update(checkpoint_info.metadata.get("sd_merge_models", {})) |
|
|
|
add_model_metadata(primary_model_info) |
|
if secondary_model_info: |
|
add_model_metadata(secondary_model_info) |
|
if tertiary_model_info: |
|
add_model_metadata(tertiary_model_info) |
|
|
|
metadata["sd_merge_models"] = json.dumps(sd_merge_models) |
|
|
|
_, extension = os.path.splitext(output_modelname) |
|
if extension.lower() == ".safetensors": |
|
safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata) |
|
else: |
|
torch.save(theta_0, output_modelname) |
|
|
|
sd_models.list_models() |
|
created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None) |
|
if created_model: |
|
created_model.calculate_shorthash() |
|
|
|
create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info) |
|
|
|
print(f"Checkpoint saved to {output_modelname}.") |
|
shared.state.textinfo = "Checkpoint saved" |
|
shared.state.end() |
|
|
|
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname] |
|
|