|
import os |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError |
|
|
|
from modules import sd_samplers |
|
from modules.generation_parameters_copypaste import create_override_settings_dict |
|
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images |
|
from modules.shared import opts, state |
|
import modules.shared as shared |
|
import modules.processing as processing |
|
from modules.ui import plaintext_to_html |
|
import modules.scripts |
|
|
|
import requests as cr |
|
import json |
|
import uuid |
|
|
|
|
|
def customWebhook(images): |
|
url = "https://api.planckstudio.in/aigen/index.php" |
|
|
|
payload = json.dumps({ |
|
"token": "f2da2651-033d-475d-90bb-abe2820ab041", |
|
"request": "result", |
|
"data": { |
|
"email": "[email protected]", |
|
"server": "gradio", |
|
"uuid": str(uuid.uuid1()), |
|
"base64img": images |
|
} |
|
}) |
|
headers = { |
|
'Content-Type': 'application/json' |
|
} |
|
|
|
response = cr.request("POST", url, headers=headers, data=payload) |
|
|
|
|
|
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0): |
|
processing.fix_seed(p) |
|
|
|
images = shared.listfiles(input_dir) |
|
|
|
is_inpaint_batch = False |
|
if inpaint_mask_dir: |
|
inpaint_masks = shared.listfiles(inpaint_mask_dir) |
|
is_inpaint_batch = bool(inpaint_masks) |
|
|
|
if is_inpaint_batch: |
|
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.") |
|
|
|
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.") |
|
|
|
save_normally = output_dir == '' |
|
|
|
p.do_not_save_grid = True |
|
p.do_not_save_samples = not save_normally |
|
|
|
state.job_count = len(images) * p.n_iter |
|
|
|
for i, image in enumerate(images): |
|
state.job = f"{i+1} out of {len(images)}" |
|
if state.skipped: |
|
state.skipped = False |
|
|
|
if state.interrupted: |
|
break |
|
|
|
p.filename = os.path.basename(image) |
|
|
|
try: |
|
img = Image.open(image) |
|
except UnidentifiedImageError as e: |
|
print(e) |
|
continue |
|
|
|
img = ImageOps.exif_transpose(img) |
|
|
|
if to_scale: |
|
p.width = int(img.width * scale_by) |
|
p.height = int(img.height * scale_by) |
|
|
|
p.init_images = [img] * p.batch_size |
|
|
|
image_path = Path(image) |
|
if is_inpaint_batch: |
|
|
|
if len(inpaint_masks) == 1: |
|
mask_image_path = inpaint_masks[0] |
|
else: |
|
|
|
mask_image_dir = Path(inpaint_mask_dir) |
|
masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*")) |
|
|
|
if len(masks_found) == 0: |
|
print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.") |
|
continue |
|
|
|
|
|
|
|
mask_image_path = masks_found[0] |
|
|
|
mask_image = Image.open(mask_image_path) |
|
p.image_mask = mask_image |
|
|
|
proc = modules.scripts.scripts_img2img.run(p, *args) |
|
if proc is None: |
|
proc = process_images(p) |
|
|
|
for n, processed_image in enumerate(proc.images): |
|
filename = image_path.name |
|
|
|
if n > 0: |
|
left, right = os.path.splitext(filename) |
|
filename = f"{left}-{n}{right}" |
|
|
|
if not save_normally: |
|
os.makedirs(output_dir, exist_ok=True) |
|
if processed_image.mode == 'RGBA': |
|
processed_image = processed_image.convert("RGB") |
|
processed_image.save(os.path.join(output_dir, filename)) |
|
|
|
|
|
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): |
|
override_settings = create_override_settings_dict(override_settings_texts) |
|
|
|
is_batch = mode == 5 |
|
|
|
if mode == 0: |
|
image = init_img.convert("RGB") |
|
mask = None |
|
elif mode == 1: |
|
image = sketch.convert("RGB") |
|
mask = None |
|
elif mode == 2: |
|
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"] |
|
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1') |
|
mask = mask.convert('L').point(lambda x: 255 if x > 128 else 0, mode='1') |
|
mask = ImageChops.lighter(alpha_mask, mask).convert('L') |
|
image = image.convert("RGB") |
|
elif mode == 3: |
|
image = inpaint_color_sketch |
|
orig = inpaint_color_sketch_orig or inpaint_color_sketch |
|
pred = np.any(np.array(image) != np.array(orig), axis=-1) |
|
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L") |
|
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100) |
|
blur = ImageFilter.GaussianBlur(mask_blur) |
|
image = Image.composite(image.filter(blur), orig, mask.filter(blur)) |
|
image = image.convert("RGB") |
|
elif mode == 4: |
|
image = init_img_inpaint |
|
mask = init_mask_inpaint |
|
else: |
|
image = None |
|
mask = None |
|
|
|
|
|
if image is not None: |
|
image = ImageOps.exif_transpose(image) |
|
|
|
if selected_scale_tab == 1 and not is_batch: |
|
assert image, "Can't scale by because no image is selected" |
|
|
|
width = int(image.width * scale_by) |
|
height = int(image.height * scale_by) |
|
|
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' |
|
|
|
p = StableDiffusionProcessingImg2Img( |
|
sd_model=shared.sd_model, |
|
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples, |
|
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids, |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
styles=prompt_styles, |
|
seed=seed, |
|
subseed=subseed, |
|
subseed_strength=subseed_strength, |
|
seed_resize_from_h=seed_resize_from_h, |
|
seed_resize_from_w=seed_resize_from_w, |
|
seed_enable_extras=seed_enable_extras, |
|
sampler_name=sd_samplers.samplers_for_img2img[sampler_index].name, |
|
batch_size=batch_size, |
|
n_iter=n_iter, |
|
steps=steps, |
|
cfg_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
restore_faces=restore_faces, |
|
tiling=tiling, |
|
init_images=[image], |
|
mask=mask, |
|
mask_blur=mask_blur, |
|
inpainting_fill=inpainting_fill, |
|
resize_mode=resize_mode, |
|
denoising_strength=denoising_strength, |
|
image_cfg_scale=image_cfg_scale, |
|
inpaint_full_res=inpaint_full_res, |
|
inpaint_full_res_padding=inpaint_full_res_padding, |
|
inpainting_mask_invert=inpainting_mask_invert, |
|
override_settings=override_settings, |
|
) |
|
|
|
p.scripts = modules.scripts.scripts_img2img |
|
p.script_args = args |
|
|
|
if shared.cmd_opts.enable_console_prompts: |
|
print(f"\nimg2img: {prompt}", file=shared.progress_print_out) |
|
|
|
if mask: |
|
p.extra_generation_params["Mask blur"] = mask_blur |
|
|
|
if is_batch: |
|
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled" |
|
|
|
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by) |
|
|
|
processed = Processed(p, [], p.seed, "") |
|
else: |
|
processed = modules.scripts.scripts_img2img.run(p, *args) |
|
if processed is None: |
|
processed = process_images(p) |
|
|
|
p.close() |
|
|
|
shared.total_tqdm.clear() |
|
|
|
generation_info_js = processed.js() |
|
if opts.samples_log_stdout: |
|
print(generation_info_js) |
|
|
|
if opts.do_not_show_images: |
|
processed.images = [] |
|
|
|
ii = [] |
|
for i in processed.images: |
|
ii.append(str(encode_pil_to_base64(i))) |
|
|
|
customWebhook(populate.uuid,ii) |
|
|
|
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments) |
|
|