|
import os |
|
import sys |
|
from collections import namedtuple |
|
from pathlib import Path |
|
import re |
|
|
|
import torch |
|
import torch.hub |
|
|
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
from modules import devices, paths, shared, lowvram, modelloader, errors |
|
|
|
blip_image_eval_size = 384 |
|
clip_model_name = 'ViT-L/14' |
|
|
|
Category = namedtuple("Category", ["name", "topn", "items"]) |
|
|
|
re_topn = re.compile(r"\.top(\d+)\.") |
|
|
|
def category_types(): |
|
return [f.stem for f in Path(shared.interrogator.content_dir).glob('*.txt')] |
|
|
|
|
|
def download_default_clip_interrogate_categories(content_dir): |
|
print("Downloading CLIP categories...") |
|
|
|
tmpdir = f"{content_dir}_tmp" |
|
category_types = ["artists", "flavors", "mediums", "movements"] |
|
|
|
try: |
|
os.makedirs(tmpdir, exist_ok=True) |
|
for category_type in category_types: |
|
torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt")) |
|
os.rename(tmpdir, content_dir) |
|
|
|
except Exception as e: |
|
errors.display(e, "downloading default CLIP interrogate categories") |
|
finally: |
|
if os.path.exists(tmpdir): |
|
os.removedirs(tmpdir) |
|
|
|
|
|
class InterrogateModels: |
|
blip_model = None |
|
clip_model = None |
|
clip_preprocess = None |
|
dtype = None |
|
running_on_cpu = None |
|
|
|
def __init__(self, content_dir): |
|
self.loaded_categories = None |
|
self.skip_categories = [] |
|
self.content_dir = content_dir |
|
self.running_on_cpu = devices.device_interrogate == torch.device("cpu") |
|
|
|
def categories(self): |
|
if not os.path.exists(self.content_dir): |
|
download_default_clip_interrogate_categories(self.content_dir) |
|
|
|
if self.loaded_categories is not None and self.skip_categories == shared.opts.interrogate_clip_skip_categories: |
|
return self.loaded_categories |
|
|
|
self.loaded_categories = [] |
|
|
|
if os.path.exists(self.content_dir): |
|
self.skip_categories = shared.opts.interrogate_clip_skip_categories |
|
category_types = [] |
|
for filename in Path(self.content_dir).glob('*.txt'): |
|
category_types.append(filename.stem) |
|
if filename.stem in self.skip_categories: |
|
continue |
|
m = re_topn.search(filename.stem) |
|
topn = 1 if m is None else int(m.group(1)) |
|
with open(filename, "r", encoding="utf8") as file: |
|
lines = [x.strip() for x in file.readlines()] |
|
|
|
self.loaded_categories.append(Category(name=filename.stem, topn=topn, items=lines)) |
|
|
|
return self.loaded_categories |
|
|
|
def create_fake_fairscale(self): |
|
class FakeFairscale: |
|
def checkpoint_wrapper(self): |
|
pass |
|
|
|
sys.modules["fairscale.nn.checkpoint.checkpoint_activations"] = FakeFairscale |
|
|
|
def load_blip_model(self): |
|
self.create_fake_fairscale() |
|
import models.blip |
|
|
|
files = modelloader.load_models( |
|
model_path=os.path.join(paths.models_path, "BLIP"), |
|
model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth', |
|
ext_filter=[".pth"], |
|
download_name='model_base_caption_capfilt_large.pth', |
|
) |
|
|
|
blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json")) |
|
blip_model.eval() |
|
|
|
return blip_model |
|
|
|
def load_clip_model(self): |
|
import clip |
|
|
|
if self.running_on_cpu: |
|
model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path) |
|
else: |
|
model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path) |
|
|
|
model.eval() |
|
model = model.to(devices.device_interrogate) |
|
|
|
return model, preprocess |
|
|
|
def load(self): |
|
if self.blip_model is None: |
|
self.blip_model = self.load_blip_model() |
|
if not shared.cmd_opts.no_half and not self.running_on_cpu: |
|
self.blip_model = self.blip_model.half() |
|
|
|
self.blip_model = self.blip_model.to(devices.device_interrogate) |
|
|
|
if self.clip_model is None: |
|
self.clip_model, self.clip_preprocess = self.load_clip_model() |
|
if not shared.cmd_opts.no_half and not self.running_on_cpu: |
|
self.clip_model = self.clip_model.half() |
|
|
|
self.clip_model = self.clip_model.to(devices.device_interrogate) |
|
|
|
self.dtype = next(self.clip_model.parameters()).dtype |
|
|
|
def send_clip_to_ram(self): |
|
if not shared.opts.interrogate_keep_models_in_memory: |
|
if self.clip_model is not None: |
|
self.clip_model = self.clip_model.to(devices.cpu) |
|
|
|
def send_blip_to_ram(self): |
|
if not shared.opts.interrogate_keep_models_in_memory: |
|
if self.blip_model is not None: |
|
self.blip_model = self.blip_model.to(devices.cpu) |
|
|
|
def unload(self): |
|
self.send_clip_to_ram() |
|
self.send_blip_to_ram() |
|
|
|
devices.torch_gc() |
|
|
|
def rank(self, image_features, text_array, top_count=1): |
|
import clip |
|
|
|
devices.torch_gc() |
|
|
|
if shared.opts.interrogate_clip_dict_limit != 0: |
|
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)] |
|
|
|
top_count = min(top_count, len(text_array)) |
|
text_tokens = clip.tokenize(list(text_array), truncate=True).to(devices.device_interrogate) |
|
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
|
|
similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate) |
|
for i in range(image_features.shape[0]): |
|
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) |
|
similarity /= image_features.shape[0] |
|
|
|
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) |
|
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] |
|
|
|
def generate_caption(self, pil_image): |
|
gpu_image = transforms.Compose([ |
|
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|
])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate) |
|
|
|
with torch.no_grad(): |
|
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length) |
|
|
|
return caption[0] |
|
|
|
def interrogate(self, pil_image): |
|
res = "" |
|
shared.state.begin() |
|
shared.state.job = 'interrogate' |
|
try: |
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: |
|
lowvram.send_everything_to_cpu() |
|
devices.torch_gc() |
|
|
|
self.load() |
|
|
|
caption = self.generate_caption(pil_image) |
|
self.send_blip_to_ram() |
|
devices.torch_gc() |
|
|
|
res = caption |
|
|
|
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate) |
|
|
|
with torch.no_grad(), devices.autocast(): |
|
image_features = self.clip_model.encode_image(clip_image).type(self.dtype) |
|
|
|
image_features /= image_features.norm(dim=-1, keepdim=True) |
|
|
|
for cat in self.categories(): |
|
matches = self.rank(image_features, cat.items, top_count=cat.topn) |
|
for match, score in matches: |
|
if shared.opts.interrogate_return_ranks: |
|
res += f", ({match}:{score/100:.3f})" |
|
else: |
|
res += f", {match}" |
|
|
|
except Exception: |
|
errors.report("Error interrogating", exc_info=True) |
|
res += "<error>" |
|
|
|
self.unload() |
|
shared.state.end() |
|
|
|
return res |
|
|