Yeb Havinga commited on
Commit
cbd4cc4
1 Parent(s): fe8b19c

Autoupdate README.md

Browse files
Files changed (2) hide show
  1. README.md +148 -85
  2. evaluation_t5_dutch_english.png +0 -0
README.md CHANGED
@@ -1,6 +1,7 @@
1
  ---
2
  language:
3
  - nl
 
4
  datasets:
5
  - yhavinga/mc4_nl_cleaned
6
  - yhavinga/ccmatrix
@@ -11,24 +12,44 @@ tags:
11
 
12
  pipeline_tag: translation
13
  widget:
14
- - text: "It is a painful and tragic spectacle that rises before me: I have drawn back the curtain from the rottenness of man. This word, in my mouth, is at least free from one suspicion: that it involves a moral accusation against humanity. It is used--and I wish to emphasize the fact again--without any moral significance: and this is so far true that the rottenness I speak of is most apparent to me precisely in those quarters where there has been most aspiration, hitherto, toward 'virtue' and 'godliness.'"
15
- - text: "For once Fletcher’s sedate features showed a certain lightness. 'I believe I will linger awhile longer.' He indicated a holoscreen which was displaying the image from an external camera. Cloud-splattered landscape was rolling past, pastel greens, browns, and blues illuminated by Duke’s radiance. 'It is not often a mortal man is permitted to view a world over the shoulder of angels.'"
16
 
17
  license: apache-2.0
18
  ---
19
 
20
  # t5-base-36L-ccmatrix-multi
21
 
22
- A [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) model finetuned on Dutch to English and English to Dutch translation with the CCMatrix dataset.
23
  Evaluation metrics of this model are listed in the **Translation models** section below.
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  This **t5 eff** model has **728M** parameters.
26
- It was pre-trained on the dataset
27
  `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **17d15h**,
28
- with a sequence length of **512**, batch size **512** and **212963** total steps.
29
  Pre-training evaluation loss and accuracy are **1,05** and **0,76**.
30
-
31
-
32
 
33
 
34
  ## Tokenizer
@@ -38,9 +59,9 @@ and has 32003 tokens.
38
  It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling).
39
  See [./raw/main/tokenizer.json](tokenizer.json) for details.
40
 
41
- ## Dataset
42
 
43
- All models listed below are trained on
44
  [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned),
45
  which is the original mC4, except
46
 
@@ -51,96 +72,138 @@ which is the original mC4, except
51
  * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies",
52
  "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed.
53
 
54
- The Dutch and English models are trained on a 50/50% mix of Dutch mC4 and English C4.
55
 
56
- ## Models
57
 
58
- Three types of models have been trained. `t5-base-dutch` is the only model with an original T5 config.
 
 
 
59
  The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function,
60
  and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`).
61
- The T5-eff models are models with mostly different numbers of layers. The table will list
62
- the several dimensions of these models. Note that `efficient` is a misnomer for models with few layers,
63
- e.g. `t5-xl-4L-dutch-english-cased`, that is not efficient and one of the worst models on downstream summarization.
64
 
65
- | | t5-base-dutch | t5-v1.1-base-dutch-uncased | t5-v1.1-base-dutch-cased | t5-v1.1-large-dutch-cased | t5-v1_1-base-dutch-english-cased | t5-v1_1-base-dutch-english-cased-1024 | t5-small-24L-dutch-english | t5-xl-4L-dutch-english-cased | t5-base-36L-dutch-english-cased | t5-eff-xl-8l-dutch-english-cased | t5-eff-large-8l-dutch-english-cased |
66
  |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------|
67
- | type | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff |
68
- | d_model | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 |
69
- | d_ff | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 |
70
- | num_heads | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 |
71
- | d_kv | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 |
72
- | num_layers | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 |
73
- | num parameters | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M |
74
- | feed_forward_proj | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu |
75
- | dropout | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 |
76
- | dataset | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl |
77
- | tr. seq len | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 |
78
- | batch size | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 |
79
- | total steps | 527500 | 1014525 | 1210154 | 2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 |
80
- | epochs | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 |
81
- | duration | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h |
82
- | optimizer | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor |
83
- | lr | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 |
84
- | warmup | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 |
85
- | eval loss | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 |
86
- | eval acc | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 |
87
-
88
- ## Evaluation on summarization
89
-
90
- The models below have been evaluated on the summarization downstream task on 50K samples from the CNN Dailymail dataset.
91
- All models were fine-tuned with the AdamW optimizer with a batch size of 128 and constant learning rate of 1e-3 after a
92
- warmup of 64 steps, with a label smoothing factor of 0.05.
93
- Article and summary token lengths were set to 1024 and 142.
94
-
95
- | | t5-base-dutch | t5-v1.1-base-dutch-uncased | t5-v1.1-base-dutch-cased | t5-v1_1-base-dutch-english-cased | t5-v1_1-base-dutch-english-cased-1024 | t5-small-24L-dutch-english | t5-xl-4L-dutch-english-cased | t5-base-36L-dutch-english-cased | t5-eff-large-8l-dutch-english-cased | mt5-base |
96
- |:-------------------|:----------------|:-----------------------------|:---------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:--------------------------------------|:-----------|
97
- | rouge1 | 33.0313 | 33.8432 | 34.0906 | 33.1116 | 34.6465 | 34.376 | 30.8983 | 35.0931 | 33.9293 | 33.6466 |
98
- | rouge2 | 12.9452 | 13.7706 | 13.6203 | 13.275 | 13.8525 | 13.8939 | 11.6005 | 14.3823 | 13.6274 | 13.1085 |
99
- | rougeL | 23.7204 | 24.5642 | 24.7304 | 24.3561 | 24.721 | 25.2496 | 22.6536 | 25.3213 | 24.5595 | 23.909 |
100
- | rougeLsum | 29.842 | 30.7783 | 31.1438 | 30.0548 | 31.6104 | 31.3838 | 27.8467 | 32.3526 | 30.952 | 30.5054 |
101
- | gen_len | 90.488 | 91.832 | 92.122 | 89.583 | 98.333 | 90.442 | 92.342 | 96.832 | 95.057 | 96.312 |
102
- | num parameters | 223M | 248M | 248M | 248M | 248M | 250M | 585M | 729M | 335M | 582M |
103
- | samples_per_second | 3.195 | 3.039 | 3.0 | 3.216 | 2.974 | 1.594 | 2.47 | 0.623 | 3.087 | 1.201 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  ## Translation models
106
 
107
- The small 24L and base 36L models have been fine-tuned for translation on the CCMatrix dataset.
108
- The models named *-`multi` support both directions of translation. The models are trained on CCMatrix only. As this is
109
- a really large dataset with over 100M Dutch-English sentence pairs, the models are trained on a fraction of it,
110
- refer to the table below for how long. Evaluation is performed on a CCMatrix section not trained on, but also
111
- on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score
112
- averaged over all three evaluation datasets.
113
-
114
- The translation metrics are listed in the table below:
115
-
116
- | | t5-base-36L-ccmatrix-en-nl | t5-base-36L-ccmatrix-multi | t5-base-36L-ccmatrix-multi | t5-small-24L-ccmatrix-multi | t5-small-24L-ccmatrix-multi |
117
- |:-----------------------|:-----------------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------|
118
- | id | 0 | 14 | 15 | 16 | 20 |
119
- | source_lang | en | en | nl | en | nl |
120
- | target_lang | nl | nl | en | nl | en |
121
- | source_prefix | translate English to Dutch: | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: |
122
- | tatoeba_bp | 0.9897614370103832 | 0.9736173618072754 | 0.943521164106552 | 0.9760983304454847 | 0.9406676405486575 |
123
- | ccmatrix_bp | 0.9590750786190209 | 0.9536276245543676 | 0.9635673583308255 | 0.9517934939463099 | 0.9585648049711814 |
124
- | opus_books_bp | 0.7478011343203491 | 0.7950194726093107 | 0.9362852511299413 | 0.770498474692027 | 0.8870675076932444 |
125
- | tatoeba_score | 50.63006965176505 | 46.580601850286214 | 52.82030981131822 | 46.419809813946046 | 51.67887417355214 |
126
- | ccmatrix_score | 60.33227938980884 | 56.81297258845844 | 62.836646082246254 | 57.404319674892406 | 63.08633155239932 |
127
- | opus_books_score | 10.405013868050663 | 13.477997378535864 | 24.93113308798125 | 12.927244801365507 | 23.418552148252047 |
128
- | avg_bleu | 40.455787636541515 | 38.95719060576017 | 46.86269632718191 | 38.91712476340132 | 46.0612526247345 |
129
- | total steps | 78125 | 390625 | 390625 | 390625 | 390625 |
130
- | duration | 14h | 101h | 101h | 74h | 74h |
131
- | num_parameters | 728928000 | 728928000 | 728928000 | 249991680 | 249991680 |
132
- | label_smoothing_factor | 0.09 | 0.15 | 0.15 | 0.1 | 0.1 |
133
- | learning_rate | 0.0001 | 5e-05 | 5e-05 | 0.0005 | 0.0005 |
 
 
 
134
 
135
  ## Acknowledgements
136
 
137
  This project would not have been possible without compute generously provided by Google through the
138
- [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem and was also
139
- instrumental all parts of the training. Logging metrics to Weights & Biases made it possible to keep track of many
140
- models and orchestrate hyper-parameter sweeps with insightful visualizations. I cannot imagine how I would
141
- have completed this project otherwise.
142
  The following repositories where helpful in setting up the TPU-VM,
143
- and getting an idea what sensible hyper-parameters are for training gpt2 from scratch.
144
 
145
  * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp)
146
  * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch)
 
1
  ---
2
  language:
3
  - nl
4
+ - en
5
  datasets:
6
  - yhavinga/mc4_nl_cleaned
7
  - yhavinga/ccmatrix
 
12
 
13
  pipeline_tag: translation
14
  widget:
15
+ - text: "It is a painful and tragic spectacle that rises before me: I have drawn back the curtain from the rottenness of man. This word, in my mouth, is at least free from one suspicion: that it involves a moral accusation against humanity."
16
+ - text: "Young Wehling was hunched in his chair, his head in his hand. He was so rumpled, so still and colorless as to be virtually invisible. His camouflage was perfect, since the waiting room had a disorderly and demoralized air, too. Chairs and ashtrays had been moved away from the walls. The floor was paved with spattered dropcloths."
17
 
18
  license: apache-2.0
19
  ---
20
 
21
  # t5-base-36L-ccmatrix-multi
22
 
23
+ A [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) model finetuned for Dutch to English and English to Dutch translation on the CCMatrix dataset.
24
  Evaluation metrics of this model are listed in the **Translation models** section below.
25
 
26
+ You can use this model directly with a pipeline for text translation:
27
+
28
+ ```python
29
+ model_name = "yhavinga/t5-base-36L-ccmatrix-multi"
30
+ from transformers import AutoTokenizer
31
+ from transformers import AutoModelForSeq2SeqLM
32
+ from transformers import pipeline
33
+ import torch
34
+ device_num = 0 if torch.cuda.is_available() else -1
35
+ device = "cpu" if device_num < 0 else f"cuda:{device_num}"
36
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
37
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
38
+ params = {"max_length": 128, "num_beams": 4, "early_stopping": True}
39
+ en_to_nl = pipeline("translation_en_to_nl", tokenizer=tokenizer, model=model, device=device_num)
40
+ print(en_to_nl("""Young Wehling was hunched in his chair, his head in his hand. He was so rumpled, so still and colorless as to be virtually invisible.""",
41
+ **params)[0]['translation_text'])
42
+ nl_to_en = pipeline("translation_nl_to_en", tokenizer=tokenizer, model=model, device=device_num)
43
+ print(nl_to_en("""De jonge Wehling zat gebogen in zijn stoel, zijn hoofd in zijn hand. Hij was zo stoffig, zo stil en kleurloos dat hij vrijwel onzichtbaar was.""",
44
+ **params)[0]['translation_text'])
45
+ ```
46
+
47
  This **t5 eff** model has **728M** parameters.
48
+ It was pre-trained with masked language modeling (denoise token span corruption) objective on the dataset
49
  `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **17d15h**,
50
+ with a sequence length of **512**, batch size **512** and **212963** total steps (**56B** tokens).
51
  Pre-training evaluation loss and accuracy are **1,05** and **0,76**.
52
+ Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation.
 
53
 
54
 
55
  ## Tokenizer
 
59
  It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling).
60
  See [./raw/main/tokenizer.json](tokenizer.json) for details.
61
 
62
+ ## Dataset(s)
63
 
64
+ All models listed below are pre-trained on
65
  [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned),
66
  which is the original mC4, except
67
 
 
72
  * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies",
73
  "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed.
74
 
75
+ The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4.
76
 
77
+ The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix).
78
 
79
+ ## Dutch T5 Models
80
+
81
+ Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models).
82
+ `t5-base-dutch` is the only model with an original T5 config.
83
  The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function,
84
  and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`).
85
+ The T5-eff models are models that differ in their number of layers. The table will list
86
+ the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient
87
+ `t5-xl-4L-dutch-english-cased`.
88
 
89
+ | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) |
90
  |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------|
91
+ | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff |
92
+ | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 |
93
+ | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 |
94
+ | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 |
95
+ | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 |
96
+ | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 |
97
+ | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M |
98
+ | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu |
99
+ | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 |
100
+ | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl |
101
+ | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 |
102
+ | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 |
103
+ | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 |
104
+ | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 |
105
+ | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h |
106
+ | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor |
107
+ | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 |
108
+ | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 |
109
+ | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 |
110
+ | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 |
111
+
112
+ ## Evaluation
113
+
114
+ Most models from the list above have been fine-tuned for summarization and translation.
115
+ The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better)
116
+ and y-axis the summarization Rouge1 translation score (higher is better).
117
+ Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is
118
+ plotted as bleu.
119
+
120
+ ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png)
121
+
122
+ Evaluation was run on fine-tuned models trained with the following settings:
123
+
124
+
125
+ | | Summarization | Translation |
126
+ |---------------:|------------------|-------------------|
127
+ | Dataset | CNN Dailymail NL | CCMatrix en -> nl |
128
+ | #train samples | 50K | 50K |
129
+ | Optimizer | Adam | Adam |
130
+ | learning rate | 0.001 | 0.0005 |
131
+ | source length | 1024 | 128 |
132
+ | target length | 142 | 128 |
133
+ |label smoothing | 0.05 | 0.1 |
134
+ | #eval samples | 1000 | 1000 |
135
+
136
+ Note that the amount of training data is limited to a fraction of the total dataset sizes, therefore the scores
137
+ below can only be used to compare the 'transfer-learning' strength. The fine-tuned checkpoints for this evaluation
138
+ are not saved, since they were trained for comparison of pre-trained models only.
139
+
140
+ The numbers for summarization are the Rouge scores on 1000 documents from the test split.
141
+
142
+ | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base |
143
+ |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:|
144
+ | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 |
145
+ | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 |
146
+ | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 |
147
+ | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 |
148
+ | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 |
149
+
150
+ The models below have been evaluated for English to Dutch translation.
151
+ Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because
152
+ the translation direction is English to Dutch.
153
+ The numbers reported are the Bleu scores on 1000 documents from the test split.
154
+
155
+ | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base |
156
+ |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:|
157
+ | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 |
158
+ | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 |
159
+ | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 |
160
+ | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 |
161
+ | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 |
162
+ | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 |
163
+ | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 |
164
+
165
 
166
  ## Translation models
167
 
168
+ The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language
169
+ directions on the first 25M samples from CCMatrix, giving a total of 50M training samples.
170
+ Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books.
171
+ The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score
172
+ averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions.
173
+
174
+ | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) |
175
+ |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------|
176
+ | *source_lang* | en | nl | en | nl |
177
+ | *target_lang* | nl | en | nl | en |
178
+ | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: |
179
+ | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** |
180
+ | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 |
181
+ | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 |
182
+ | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 |
183
+ | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 |
184
+ | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 |
185
+ | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 |
186
+ | *max_source_length* | 128 | 128 | 128 | 128 |
187
+ | *max_target_length* | 128 | 128 | 128 | 128 |
188
+ | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 |
189
+ | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 |
190
+ | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 |
191
+ | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 |
192
+ | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 |
193
+ | *train_batch_size* | 128 | 128 | 128 | 128 |
194
+ | *warmup_steps* | 2000 | 2000 | 2000 | 2000 |
195
+ | *total steps* | 390625 | 390625 | 390625 | 390625 |
196
+ | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h |
197
+ | *num parameters* | 729M | 729M | 250M | 250M |
198
 
199
  ## Acknowledgements
200
 
201
  This project would not have been possible without compute generously provided by Google through the
202
+ [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts
203
+ of the training. Weights & Biases made it possible to keep track of many training sessions
204
+ and orchestrate hyper-parameter sweeps with insightful visualizations.
 
205
  The following repositories where helpful in setting up the TPU-VM,
206
+ and getting an idea what sensible hyper-parameters are for training gpt2 from scratch:
207
 
208
  * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp)
209
  * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch)
evaluation_t5_dutch_english.png ADDED