python run_t5_mlm_flax.py \ | |
--output_dir="${MODEL_PATH}" \ | |
--model_type="t5" \ | |
--config_name="${MODEL_PATH}" \ | |
--tokenizer_name="${MODEL_PATH}" \ | |
--preprocessing_num_workers="96" \ | |
--do_train --do_eval \ | |
--dataset_name="${DATASET}" \ | |
--dataset_config_name="${DATASET_CONFIG}" \ | |
--max_seq_length="512" \ | |
--per_device_train_batch_size="16" \ | |
--per_device_eval_batch_size="16" \ | |
--adafactor \ | |
--learning_rate="0.005" \ | |
--overwrite_output_dir \ | |
--num_train_epochs="1" \ | |
--logging_steps="500" \ | |
--save_steps="80000" \ | |
--eval_steps="2500" \ | |
--weight_decay="0.01" \ | |
--warmup_steps="10000" \ | |
--validation_split_count="15000" \ | |
--push_to_hub \ | |
# --adam_beta1="0.9" \ | |
# --adam_beta2="0.98" \ | |
# --resume_from_checkpoint="${MODEL_DIR}" \ # Uncomment to resume from ckpt | |
# --max_train_samples 100000 \ | |
# --max_eval_samples 1000 \ | |
# --adafactor \ | |
# --save_steps="80000" \ | |
# Instead of adafactor: adamw | |