File size: 4,791 Bytes
96506f2 9944fbe 96506f2 9944fbe 96506f2 9944fbe 96506f2 69cedf9 9944fbe 96506f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: other
base_model: nvidia/mit-b1
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b1-miic-tl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-miic-tl
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the yijisuk/ic-chip-sample dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2212
- Mean Iou: 0.4723
- Mean Accuracy: 0.9446
- Overall Accuracy: 0.9446
- Accuracy Unlabeled: nan
- Accuracy Circuit: 0.9446
- Iou Unlabeled: 0.0
- Iou Circuit: 0.9446
- Dice Coefficient: 0.8541
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit | Dice Coefficient |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:|:----------------:|
| 0.3419 | 3.12 | 250 | 0.2745 | 0.4850 | 0.9701 | 0.9701 | nan | 0.9701 | 0.0 | 0.9701 | 0.8149 |
| 0.2785 | 6.25 | 500 | 0.2789 | 0.4828 | 0.9657 | 0.9657 | nan | 0.9657 | 0.0 | 0.9657 | 0.8285 |
| 0.2549 | 9.38 | 750 | 0.2888 | 0.4721 | 0.9443 | 0.9443 | nan | 0.9443 | 0.0 | 0.9443 | 0.8372 |
| 0.2728 | 12.5 | 1000 | 0.2426 | 0.4699 | 0.9397 | 0.9397 | nan | 0.9397 | 0.0 | 0.9397 | 0.8424 |
| 0.2625 | 15.62 | 1250 | 0.1990 | 0.4632 | 0.9264 | 0.9264 | nan | 0.9264 | 0.0 | 0.9264 | 0.8520 |
| 0.2449 | 18.75 | 1500 | 0.2121 | 0.4706 | 0.9412 | 0.9412 | nan | 0.9412 | 0.0 | 0.9412 | 0.8508 |
| 0.2173 | 21.88 | 1750 | 0.2768 | 0.4780 | 0.9559 | 0.9559 | nan | 0.9559 | 0.0 | 0.9559 | 0.8485 |
| 0.2158 | 25.0 | 2000 | 0.2772 | 0.4643 | 0.9287 | 0.9287 | nan | 0.9287 | 0.0 | 0.9287 | 0.8383 |
| 0.1843 | 28.12 | 2250 | 0.1818 | 0.4671 | 0.9343 | 0.9343 | nan | 0.9343 | 0.0 | 0.9343 | 0.8685 |
| 0.1608 | 31.25 | 2500 | 0.1794 | 0.4591 | 0.9182 | 0.9182 | nan | 0.9182 | 0.0 | 0.9182 | 0.8618 |
| 0.1504 | 34.38 | 2750 | 0.1805 | 0.4586 | 0.9172 | 0.9172 | nan | 0.9172 | 0.0 | 0.9172 | 0.8647 |
| 0.1495 | 37.5 | 3000 | 0.2090 | 0.4773 | 0.9545 | 0.9545 | nan | 0.9545 | 0.0 | 0.9545 | 0.8595 |
| 0.142 | 40.62 | 3250 | 0.2048 | 0.4750 | 0.9500 | 0.9500 | nan | 0.9500 | 0.0 | 0.9500 | 0.8666 |
| 0.1401 | 43.75 | 3500 | 0.2131 | 0.4756 | 0.9512 | 0.9512 | nan | 0.9512 | 0.0 | 0.9512 | 0.8580 |
| 0.1339 | 46.88 | 3750 | 0.2469 | 0.4773 | 0.9546 | 0.9546 | nan | 0.9546 | 0.0 | 0.9546 | 0.8481 |
| 0.1303 | 50.0 | 4000 | 0.2212 | 0.4723 | 0.9446 | 0.9446 | nan | 0.9446 | 0.0 | 0.9446 | 0.8541 |
### Framework versions
- Transformers 4.36.2
- Pytorch 1.11.0+cu115
- Datasets 2.15.0
- Tokenizers 0.15.0
|