yilunzhang
commited on
Commit
•
9ae1ebe
1
Parent(s):
b6da614
Initial Commit
Browse files- README.md +54 -3
- config.json +23 -0
- convert.py +22 -0
- model.onnx +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,54 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ONNX version of `sentence-transformers/all-mpnet-base-v2`
|
2 |
+
|
3 |
+
This is the OONX version of https://huggingface.co/sentence-transformers/all-mpnet-base-v2, examined that the produced embeddings are the same.
|
4 |
+
|
5 |
+
Optmized for CPU usage.
|
6 |
+
|
7 |
+
## Convert
|
8 |
+
|
9 |
+
The same checkpoint can also be created by using the `convert.py` script.
|
10 |
+
|
11 |
+
## Usage - `transformers`
|
12 |
+
|
13 |
+
Exactly the same as in `sentence-transformers/all-mpnet-base-v2` except using `ORTModelForFeatureExtraction` from optimum.
|
14 |
+
|
15 |
+
```
|
16 |
+
pip install optimum[onnxruntime]
|
17 |
+
```
|
18 |
+
|
19 |
+
```{python}
|
20 |
+
from transformers import AutoTokenizer
|
21 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
|
25 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
26 |
+
def mean_pooling(model_output, attention_mask):
|
27 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
28 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
29 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
30 |
+
|
31 |
+
|
32 |
+
# Sentences we want sentence embeddings for
|
33 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
34 |
+
|
35 |
+
# Load model from HuggingFace Hub
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
37 |
+
model = ORTModelForFeatureExtraction.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
38 |
+
|
39 |
+
# Tokenize sentences
|
40 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
41 |
+
|
42 |
+
# Compute token embeddings
|
43 |
+
with torch.no_grad():
|
44 |
+
model_output = model(**encoded_input)
|
45 |
+
|
46 |
+
# Perform pooling
|
47 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
48 |
+
|
49 |
+
# Normalize embeddings
|
50 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
51 |
+
|
52 |
+
print("Sentence embeddings:")
|
53 |
+
print(sentence_embeddings)
|
54 |
+
```
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/mpnet-base",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"transformers_version": "4.8.2",
|
22 |
+
"vocab_size": 30527
|
23 |
+
}
|
convert.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel
|
2 |
+
import torch
|
3 |
+
|
4 |
+
max_seq_length = 384
|
5 |
+
|
6 |
+
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
7 |
+
model.eval()
|
8 |
+
|
9 |
+
inputs = {
|
10 |
+
"input_ids": torch.ones(1, max_seq_length, dtype=torch.int64),
|
11 |
+
"attention_mask": torch.ones(1, max_seq_length, dtype=torch.int64),
|
12 |
+
}
|
13 |
+
|
14 |
+
symbolic_names = {0: 'batch_size', 1: 'max_seq_len'}
|
15 |
+
|
16 |
+
torch.onnx.export(
|
17 |
+
model,args=tuple(inputs.values()),
|
18 |
+
f="model.onnx",
|
19 |
+
export_params=True,
|
20 |
+
input_names=["input_ids", "attention_mask"], output_names=["last_hidden_state"],
|
21 |
+
dynamic_axes={"input_ids": symbolic_names, "attention_mask": symbolic_names}
|
22 |
+
)
|
model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91c3b3d55e18d17ed4657d4cc9207940ae14b526caa9ad79e55ae90cdc6f08ec
|
3 |
+
size 438158583
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "[UNK]", "pad_token": "<pad>", "mask_token": "<mask>", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "microsoft/mpnet-base", "tokenizer_class": "MPNetTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|