--- license: apache-2.0 language: - en library_name: transformers pipeline_tag: sentence-similarity tags: - ONNX - Optimum - Sentence-Transformers - ONNXRuntime --- # ONNX version of `sentence-transformers/all-mpnet-base-v2` This is the ONNX version of https://huggingface.co/sentence-transformers/all-mpnet-base-v2, examined that the produced embeddings are the same. Optmized for CPU usage. ## Convert The same checkpoint can also be created by using the `convert.py` script. ## Usage - `transformers` Exactly the same as in `sentence-transformers/all-mpnet-base-v2` except using `ORTModelForFeatureExtraction` from optimum. ``` pip install optimum[onnxruntime] ``` ```{python} from transformers import AutoTokenizer from optimum.onnxruntime import ORTModelForFeatureExtraction import torch import torch.nn.functional as F # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2') model = ORTModelForFeatureExtraction.from_pretrained('sentence-transformers/all-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ```