--- library_name: transformers license: mit base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-spanish results: [] datasets: - ciempiess/ciempiess_balance - ciempiess/ciempiess_test --- # whisper-small-espaniol This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5077 - Wer: 12.9740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2575 | 2.0 | 1000 | 0.3851 | 14.5929 | | 0.0644 | 4.0 | 2000 | 0.4300 | 13.7753 | | 0.0128 | 6.0 | 3000 | 0.4979 | 13.6955 | | 0.0035 | 8.0 | 4000 | 0.5077 | 12.9740 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1