File size: 3,576 Bytes
a1e3a80
 
 
 
59488d3
e0bfa41
 
a1e3a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6f82b9
a1e3a80
 
 
e6f82b9
31e53a4
 
e0bfa41
a1e3a80
e0bfa41
 
a1e3a80
e0bfa41
a1e3a80
e6f82b9
 
 
 
8a06a09
 
e6f82b9
59488d3
 
31e53a4
e6f82b9
e0bfa41
e6f82b9
a1e3a80
 
 
 
 
 
 
e0bfa41
a1e3a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bfa41
a1e3a80
 
 
 
e0bfa41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
base_model: google/gemma-2-2b-jpn-it
language:
- multilingual
datasets:
  - mlabonne/harmless_alpaca
  - mlabonne/harmful_behaviors
library_name: transformers
license: gemma
license_link: https://ai.google.dev/gemma/terms
pipeline_tag: text-generation
tags:
- nlp
- code
quantized_by: ymcki
widget:
- messages:
  - role: user
    content: Can you provide ways to eat combinations of bananas and dragonfruits?
---

Original model: https://huggingface.co/google/gemma-2-2b-jpn-it

## Prompt format

```
<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
<end_of_turn>
<start_of_turn>model

```

Note that this model does not support a System prompt.

This is abliterated model of [google/gemma-2-2b-jpn-it](https://huggingface.co/google/gemma-2-2b-jpn-it) using the 
[method](https://medium.com/@mlabonne/uncensor-any-llm-with-abliteration-d30148b7d43e) 
described by mlabonne.

Layer 17 of the original model was chosen for abliteration.
I also created another layer 18 and 24 abliterated models for comparison.
These three layers were chosen due to they both produce uncensored response 
after respective layer was abliterated.

It is uploaded here to be evaluated by the Open LLM Leaderboard to see how brain damaged it
is compared to the original model.

ORPO fine tuning is currently underway to see if it can regain its sanity. You can play with this model first or wait until I am done with the fine tuning.

## Benchmark (100.0*raw scores only)

Click on the model name go to the raw score json generated by Open LLM Leaderboard.

| Model | Average | IFEval | BHH | Math Lv5 | GPQA | MUSR | MMLU-PRO |
| ----- | ------- | ------ | ----|--------- | ---- | ---- | -------- |
| [gemma-2-2b-jpn-it](https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/google/gemma-2-2b-jpn-it/results_2024-10-15T15-21-39.173019.json) | 30.82 | 54.11 | 41.43 | 0.0 | 27.52 | 37.17 | 24.67 |
| [gemma-2-2b-jpn-it-abliterated-17](https://huggingface.co/datasets/open-llm-leaderboard/results/raw/main/ymcki/gemma-2-2b-jpn-it-abliterated-17/results_2024-10-18T15-18-46.821674.json) | 30.29 | 52.65 | 40.46 | 0.0 | 27.18 | 36.90 | 24.55 |
| [gemma-2-2b-jpn-it-abliterated-18](https://huggingface.co/datasets/open-llm-leaderboard/results/raw/main/ymcki/gemma-2-2b-jpn-it-abliterated-18/results_2024-10-18T15-41-42.399571.json) | 30.61 | 53.02 | 40.96 | 0.0 | 27.35 | 37.30 | 25.05 |
| [gemma-2-2b-jpn-it-abliterated-24](https://huggingface.co/datasets/open-llm-leaderboard/results/raw/main/ymcki/gemma-2-2b-jpn-it-abliterated-24/results_2024-10-25T16-29-46.542899.json) | 30.61 | 51.37 | 40.77 | 0.0 | 27.77 | 39.02 | 24.73 |

It is only slightly dumber than the original.

## How to run this model

```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model_id = "gemma-2-2b-jpn-it-abliterated-17"
dtype = torch.bfloat16

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="cuda",
    torch_dtype=dtype,)

chat = [
    { "role": "user", "content": "Write a hello world program" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```

## Downloading using huggingface-cli

First, make sure you have hugginface-cli installed:

```
pip install -U "huggingface_hub[cli]"
```

Then, you can target the specific file you want:

```
huggingface-cli download ymcki/gemma-2-2b-jpn-it-abliterated-17 --include "*" --local-dir ./
```

## Credits

Thank you mlabonne for describing his abliteration method.