File size: 15,889 Bytes
c415812
 
 
 
 
 
 
 
 
 
 
 
 
92cbe2d
 
 
 
 
 
c415812
 
 
 
 
 
 
92cbe2d
c415812
92cbe2d
 
 
c415812
92cbe2d
 
 
c415812
92cbe2d
c415812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92cbe2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: deberta-v3-base-pii-en
  results: []
pipeline_tag: token-classification
widget:
  - text: My name is Yoni Go and I live in Israel. My phone number is 054-1234567
inference:
  parameters:
    aggregation_strategy: first
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base-pii-en

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on English samples from [ai4privacy/pii-masking-300k](https://huggingface.co/datasets/ai4privacy/pii-masking-300k).

Usage:
```python
from transformers import pipeline

pipe = pipeline("token-classification", model="yonigo/deberta-v3-base-pii-en", aggregation_strategy="first")
pipe("My name is Yoni Go and I live in Israel. My phone number is 054-1234567")
```

training code [git](https://github.com/yonigottesman/pii-model)


### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Bod F1 | Building F1 | Cardissuer F1 | City F1 | Country F1 | Date F1 | Driverlicense F1 | Email F1 | Geocoord F1 | Givenname1 F1 | Givenname2 F1 | Idcard F1 | Ip F1  | Lastname1 F1 | Lastname2 F1 | Lastname3 F1 | Pass F1 | Passport F1 | Postcode F1 | Secaddress F1 | Sex F1 | Socialnumber F1 | State F1 | Street F1 | Tel F1 | Time F1 | Title F1 | Username F1 | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:-----------:|:-------------:|:-------:|:----------:|:-------:|:----------------:|:--------:|:-----------:|:-------------:|:-------------:|:---------:|:------:|:------------:|:------------:|:------------:|:-------:|:-----------:|:-----------:|:-------------:|:------:|:---------------:|:--------:|:---------:|:------:|:-------:|:--------:|:-----------:|:---------:|:------:|:------:|:--------:|
| 0.2437        | 1.0695  | 1000  | 0.1168          | 0.9421 | 0.8791      | 0.0           | 0.8847  | 0.8841     | 0.8507  | 0.8617           | 0.9746   | 0.7903      | 0.5186        | 0.0           | 0.7928    | 0.9609 | 0.5720       | 0.0          | 0.0          | 0.9128  | 0.7991      | 0.8952      | 0.7145        | 0.8960 | 0.8583          | 0.8807   | 0.8816    | 0.9170 | 0.9390  | 0.7071   | 0.8946      | 0.8053    | 0.8619 | 0.8326 | 0.9736   |
| 0.0841        | 2.1390  | 2000  | 0.0731          | 0.9605 | 0.9633      | 0.0           | 0.9526  | 0.9399     | 0.8957  | 0.9035           | 0.9819   | 0.9245      | 0.7832        | 0.5095        | 0.9001    | 0.9664 | 0.6905       | 0.3578       | 0.0          | 0.9417  | 0.8973      | 0.9628      | 0.9651        | 0.9592 | 0.9111          | 0.9699   | 0.9631    | 0.9419 | 0.9631  | 0.9382   | 0.9388      | 0.8858    | 0.9315 | 0.9081 | 0.9826   |
| 0.0592        | 3.2086  | 3000  | 0.0544          | 0.9675 | 0.9787      | 0.0           | 0.9630  | 0.9524     | 0.9192  | 0.9337           | 0.9844   | 0.9457      | 0.8391        | 0.7142        | 0.9139    | 0.9862 | 0.7777       | 0.5887       | 0.2644       | 0.9573  | 0.9166      | 0.9743      | 0.9682        | 0.9680 | 0.9437          | 0.9787   | 0.9420    | 0.9698 | 0.9674  | 0.9516   | 0.9491      | 0.9168    | 0.9492 | 0.9327 | 0.9874   |
| 0.0436        | 4.2781  | 4000  | 0.0488          | 0.9673 | 0.9821      | 0.0           | 0.9679  | 0.9709     | 0.9187  | 0.9487           | 0.9836   | 0.9722      | 0.8580        | 0.7335        | 0.9322    | 0.9912 | 0.7998       | 0.6667       | 0.5722       | 0.9432  | 0.9371      | 0.9791      | 0.9778        | 0.9705 | 0.9548          | 0.9831   | 0.9701    | 0.9680 | 0.9673  | 0.9543   | 0.9584      | 0.9331    | 0.9529 | 0.9429 | 0.9888   |
| 0.037         | 5.3476  | 5000  | 0.0518          | 0.9653 | 0.9811      | 0.0           | 0.9671  | 0.9660     | 0.9052  | 0.9392           | 0.9859   | 0.9745      | 0.8469        | 0.7616        | 0.9225    | 0.9873 | 0.8108       | 0.7059       | 0.6450       | 0.9578  | 0.9437      | 0.9772      | 0.9774        | 0.9715 | 0.9511          | 0.9827   | 0.9645    | 0.9681 | 0.9639  | 0.9617   | 0.9556      | 0.9283    | 0.9574 | 0.9426 | 0.9883   |
| 0.028         | 6.4171  | 6000  | 0.0488          | 0.9624 | 0.9842      | 0.0           | 0.9709  | 0.9732     | 0.9112  | 0.9437           | 0.9869   | 0.9767      | 0.8614        | 0.7818        | 0.9322    | 0.9860 | 0.8266       | 0.7344       | 0.7080       | 0.9518  | 0.9509      | 0.9797      | 0.9802        | 0.9768 | 0.9564          | 0.9831   | 0.9756    | 0.9717 | 0.9714  | 0.9610   | 0.9537      | 0.9383    | 0.9577 | 0.9479 | 0.9891   |
| 0.0238        | 7.4866  | 7000  | 0.0483          | 0.9625 | 0.9844      | 0.0           | 0.9705  | 0.9732     | 0.9144  | 0.9360           | 0.9804   | 0.9814      | 0.8654        | 0.7707        | 0.9328    | 0.9885 | 0.8234       | 0.7253       | 0.6873       | 0.9504  | 0.9372      | 0.9787      | 0.9750        | 0.9753 | 0.9523          | 0.9848   | 0.9755    | 0.9717 | 0.9730  | 0.9677   | 0.9567      | 0.9379    | 0.9554 | 0.9466 | 0.9893   |
| 0.0197        | 8.5561  | 8000  | 0.0517          | 0.9651 | 0.9857      | 0.0           | 0.9735  | 0.9735     | 0.9100  | 0.9579           | 0.9858   | 0.9679      | 0.8630        | 0.7748        | 0.9375    | 0.9858 | 0.8229       | 0.7259       | 0.6764       | 0.9496  | 0.9571      | 0.9800      | 0.9780        | 0.9753 | 0.9543          | 0.9829   | 0.9769    | 0.9763 | 0.9725  | 0.9637   | 0.9628      | 0.9409    | 0.9579 | 0.9493 | 0.9892   |
| 0.0164        | 9.6257  | 9000  | 0.0536          | 0.9642 | 0.9859      | 0.0           | 0.9707  | 0.9628     | 0.9175  | 0.9533           | 0.9857   | 0.9814      | 0.8617        | 0.7674        | 0.9377    | 0.9869 | 0.8193       | 0.7331       | 0.7110       | 0.9471  | 0.9535      | 0.9818      | 0.9756        | 0.9758 | 0.9602          | 0.9829   | 0.9746    | 0.9762 | 0.9710  | 0.9631   | 0.9596      | 0.9396    | 0.9581 | 0.9488 | 0.9893   |
| 0.0148        | 10.6952 | 10000 | 0.0545          | 0.9676 | 0.9849      | 0.0           | 0.9728  | 0.9741     | 0.9351  | 0.9563           | 0.9833   | 0.9791      | 0.8693        | 0.7877        | 0.9351    | 0.9863 | 0.8294       | 0.7536       | 0.7332       | 0.9609  | 0.9523      | 0.9808      | 0.9809        | 0.9775 | 0.9514          | 0.9837   | 0.9791    | 0.9713 | 0.9707  | 0.9624   | 0.9602      | 0.9435    | 0.9588 | 0.9511 | 0.9897   |
| 0.0115        | 11.7647 | 11000 | 0.0546          | 0.9661 | 0.9849      | 0.0           | 0.9757  | 0.9661     | 0.9133  | 0.9579           | 0.9800   | 0.9769      | 0.8661        | 0.7935        | 0.9439    | 0.9894 | 0.8292       | 0.7485       | 0.7126       | 0.9513  | 0.9607      | 0.9793      | 0.9815        | 0.9770 | 0.9581          | 0.9851   | 0.9803    | 0.9711 | 0.9645  | 0.9672   | 0.9588      | 0.9413    | 0.9597 | 0.9504 | 0.9896   |
| 0.0101        | 12.8342 | 12000 | 0.0573          | 0.9634 | 0.9861      | 0.0           | 0.9742  | 0.9693     | 0.9234  | 0.9574           | 0.9850   | 0.9837      | 0.8602        | 0.7854        | 0.9391    | 0.9898 | 0.8220       | 0.7470       | 0.7056       | 0.9515  | 0.9586      | 0.9834      | 0.9803        | 0.9787 | 0.9617          | 0.9841   | 0.9773    | 0.9753 | 0.9691  | 0.9649   | 0.9594      | 0.9459    | 0.9560 | 0.9509 | 0.9898   |
| 0.0084        | 13.9037 | 13000 | 0.0597          | 0.9657 | 0.9861      | 0.0           | 0.9761  | 0.9733     | 0.9136  | 0.9542           | 0.9828   | 0.9813      | 0.8672        | 0.7989        | 0.9418    | 0.9889 | 0.8326       | 0.7458       | 0.7409       | 0.9556  | 0.9573      | 0.9815      | 0.9797        | 0.9772 | 0.9616          | 0.9866   | 0.9810    | 0.9784 | 0.9644  | 0.9658   | 0.9609      | 0.9467    | 0.9568 | 0.9517 | 0.9897   |
| 0.0065        | 14.9733 | 14000 | 0.0621          | 0.9684 | 0.9859      | 0.0           | 0.9726  | 0.9741     | 0.9277  | 0.9539           | 0.9789   | 0.9814      | 0.8696        | 0.7879        | 0.9348    | 0.9868 | 0.8368       | 0.7542       | 0.7456       | 0.9487  | 0.9543      | 0.9805      | 0.9809        | 0.9780 | 0.9582          | 0.9863   | 0.9801    | 0.9763 | 0.9716  | 0.9629   | 0.9580      | 0.9439    | 0.9590 | 0.9514 | 0.9896   |
| 0.0059        | 16.0428 | 15000 | 0.0613          | 0.9679 | 0.9874      | 0.0           | 0.9770  | 0.9694     | 0.9347  | 0.9621           | 0.9786   | 0.9791      | 0.8723        | 0.7857        | 0.9403    | 0.9891 | 0.8414       | 0.7594       | 0.7371       | 0.9508  | 0.9595      | 0.9813      | 0.9797        | 0.9775 | 0.9562          | 0.9856   | 0.9790    | 0.9805 | 0.9725  | 0.9677   | 0.9554      | 0.9457    | 0.9609 | 0.9532 | 0.9901   |
| 0.005         | 17.1123 | 16000 | 0.0639          | 0.9693 | 0.9839      | 0.0           | 0.9781  | 0.9735     | 0.9264  | 0.9631           | 0.9827   | 0.9791      | 0.8731        | 0.7996        | 0.9437    | 0.9869 | 0.8406       | 0.7714       | 0.7593       | 0.9547  | 0.9559      | 0.9813      | 0.9809        | 0.9782 | 0.9502          | 0.9849   | 0.9810    | 0.9795 | 0.9731  | 0.9654   | 0.9617      | 0.9460    | 0.9616 | 0.9537 | 0.9901   |
| 0.0038        | 18.1818 | 17000 | 0.0651          | 0.9681 | 0.9869      | 0.0           | 0.9785  | 0.9747     | 0.9311  | 0.9606           | 0.9831   | 0.9837      | 0.8749        | 0.7899        | 0.9366    | 0.9889 | 0.8331       | 0.7520       | 0.7230       | 0.9582  | 0.9596      | 0.9805      | 0.9802        | 0.9784 | 0.9609          | 0.9858   | 0.9805    | 0.9800 | 0.9756  | 0.9663   | 0.9614      | 0.9494    | 0.9586 | 0.9540 | 0.9902   |
| 0.0035        | 19.2513 | 18000 | 0.0716          | 0.9661 | 0.9857      | 0.0           | 0.9791  | 0.9715     | 0.9319  | 0.9607           | 0.9829   | 0.9791      | 0.8707        | 0.8026        | 0.9385    | 0.9859 | 0.8354       | 0.7557       | 0.7374       | 0.9564  | 0.9580      | 0.9795      | 0.9803        | 0.9767 | 0.9563          | 0.9871   | 0.9823    | 0.9750 | 0.9745  | 0.9654   | 0.9574      | 0.9450    | 0.9610 | 0.9529 | 0.9896   |
| 0.0023        | 20.3209 | 19000 | 0.0682          | 0.9686 | 0.9857      | 0.0           | 0.9789  | 0.9755     | 0.9310  | 0.9621           | 0.9850   | 0.9837      | 0.8777        | 0.7974        | 0.9430    | 0.9880 | 0.8424       | 0.7600       | 0.7545       | 0.9566  | 0.9628      | 0.9813      | 0.9773        | 0.9765 | 0.9620          | 0.9863   | 0.9813    | 0.9743 | 0.9742  | 0.9660   | 0.9567      | 0.9474    | 0.9622 | 0.9548 | 0.9901   |
| 0.002         | 21.3904 | 20000 | 0.0727          | 0.9696 | 0.9857      | 0.0           | 0.9759  | 0.9742     | 0.9315  | 0.9636           | 0.9814   | 0.9814      | 0.8791        | 0.8011        | 0.9427    | 0.9898 | 0.8383       | 0.7556       | 0.7419       | 0.9588  | 0.9575      | 0.9826      | 0.9756        | 0.9756 | 0.9519          | 0.9853   | 0.9802    | 0.9733 | 0.9749  | 0.9618   | 0.9569      | 0.9459    | 0.9614 | 0.9536 | 0.9900   |
| 0.002         | 22.4599 | 21000 | 0.0756          | 0.9690 | 0.9859      | 0.0           | 0.9770  | 0.9752     | 0.9225  | 0.9626           | 0.9829   | 0.9814      | 0.8734        | 0.7850        | 0.9417    | 0.9878 | 0.8312       | 0.7560       | 0.7405       | 0.9570  | 0.9591      | 0.9805      | 0.9814        | 0.9768 | 0.9614          | 0.9858   | 0.9795    | 0.9758 | 0.9700  | 0.9643   | 0.9596      | 0.9452    | 0.9610 | 0.9530 | 0.9898   |
| 0.0014        | 23.5294 | 22000 | 0.0746          | 0.9694 | 0.9874      | 0.0           | 0.9779  | 0.9749     | 0.9309  | 0.9653           | 0.9869   | 0.9814      | 0.8739        | 0.8019        | 0.9439    | 0.9884 | 0.8365       | 0.7684       | 0.7559       | 0.9570  | 0.9587      | 0.9808      | 0.9797        | 0.9777 | 0.9570          | 0.9861   | 0.9807    | 0.9758 | 0.9732  | 0.9658   | 0.9625      | 0.9476    | 0.9621 | 0.9548 | 0.9902   |
| 0.0012        | 24.5989 | 23000 | 0.0762          | 0.9696 | 0.9864      | 1.0           | 0.9784  | 0.9761     | 0.9389  | 0.9666           | 0.9844   | 0.9814      | 0.8718        | 0.7860        | 0.9440    | 0.9880 | 0.8296       | 0.7611       | 0.7513       | 0.9579  | 0.9621      | 0.9826      | 0.9797        | 0.9777 | 0.9584          | 0.9856   | 0.9810    | 0.9757 | 0.9754  | 0.9673   | 0.9615      | 0.9484    | 0.9614 | 0.9548 | 0.9902   |
| 0.0011        | 25.6684 | 24000 | 0.0744          | 0.9698 | 0.9862      | 0.0           | 0.9783  | 0.9785     | 0.9353  | 0.9666           | 0.9832   | 0.9837      | 0.8775        | 0.8007        | 0.9454    | 0.9878 | 0.8417       | 0.7705       | 0.7680       | 0.9592  | 0.9629      | 0.9821      | 0.9785        | 0.9785 | 0.9625          | 0.9858   | 0.9831    | 0.9779 | 0.9756  | 0.9688   | 0.9615      | 0.9502    | 0.9626 | 0.9564 | 0.9904   |
| 0.001         | 26.7380 | 25000 | 0.0750          | 0.9702 | 0.9869      | 1.0           | 0.9803  | 0.9752     | 0.9335  | 0.9666           | 0.9831   | 0.9791      | 0.8836        | 0.8048        | 0.9451    | 0.9871 | 0.8435       | 0.7724       | 0.7708       | 0.9589  | 0.9624      | 0.9821      | 0.9774        | 0.9782 | 0.9605          | 0.9871   | 0.9828    | 0.9760 | 0.9762  | 0.9653   | 0.9611      | 0.9499    | 0.9630 | 0.9564 | 0.9904   |
| 0.0009        | 27.8075 | 26000 | 0.0764          | 0.9695 | 0.9877      | 1.0           | 0.9798  | 0.9767     | 0.9379  | 0.9647           | 0.9825   | 0.9746      | 0.8781        | 0.7989        | 0.9463    | 0.9878 | 0.8417       | 0.7605       | 0.7708       | 0.9595  | 0.9626      | 0.9826      | 0.9780        | 0.9782 | 0.9609          | 0.9881   | 0.9810    | 0.974  | 0.9761  | 0.9663   | 0.9606      | 0.9493    | 0.9627 | 0.9560 | 0.9903   |
| 0.0008        | 28.8770 | 27000 | 0.0767          | 0.9699 | 0.9867      | 1.0           | 0.9788  | 0.9773     | 0.9356  | 0.9654           | 0.9844   | 0.9746      | 0.8798        | 0.7989        | 0.9441    | 0.9880 | 0.8411       | 0.7651       | 0.7676       | 0.9603  | 0.9627      | 0.9815      | 0.9797        | 0.9782 | 0.9592          | 0.9881   | 0.9815    | 0.9765 | 0.9767  | 0.9666   | 0.9604      | 0.9496    | 0.9626 | 0.9561 | 0.9904   |
| 0.0008        | 29.9465 | 28000 | 0.0765          | 0.9707 | 0.9869      | 1.0           | 0.9785  | 0.9773     | 0.9381  | 0.9671           | 0.9835   | 0.9746      | 0.8823        | 0.7963        | 0.9426    | 0.9857 | 0.8426       | 0.7621       | 0.7708       | 0.9610  | 0.9621      | 0.9815      | 0.9791        | 0.9782 | 0.9590          | 0.9878   | 0.9815    | 0.9760 | 0.9770  | 0.9668   | 0.9606      | 0.9501    | 0.9623 | 0.9562 | 0.9904   |
| 0.0009        | 31.0160 | 29000 | 0.0768          | 0.9705 | 0.9867      | 1.0           | 0.9781  | 0.9773     | 0.9376  | 0.9641           | 0.9852   | 0.9769      | 0.8812        | 0.7989        | 0.9441    | 0.9875 | 0.8435       | 0.7673       | 0.7676       | 0.9610  | 0.9623      | 0.9820      | 0.9791        | 0.9782 | 0.9617          | 0.9871   | 0.9818    | 0.9767 | 0.9767  | 0.9668   | 0.9608      | 0.9504    | 0.9626 | 0.9565 | 0.9904   |
| 0.0007        | 32.0856 | 30000 | 0.0767          | 0.9705 | 0.9869      | 1.0           | 0.9781  | 0.9773     | 0.9374  | 0.9645           | 0.9850   | 0.9769      | 0.8810        | 0.7996        | 0.9443    | 0.9873 | 0.8433       | 0.7641       | 0.7696       | 0.9603  | 0.9619      | 0.9820      | 0.9791        | 0.9782 | 0.9615          | 0.9878   | 0.9815    | 0.9767 | 0.9762  | 0.9668   | 0.9606      | 0.9504    | 0.9625 | 0.9564 | 0.9904   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1