--- language: - ko license: apache-2.0 base_model: openai/whisper-large tags: - hf-asr-leaderboard - generated_from_trainer datasets: - younghoonKIM/MAICON2023_noise_preprocessd model-index: - name: whisper_large results: [] --- # whisper_large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the MAICON2023_noise dataset. It achieves the following results on the evaluation set: - Loss: 0.2609 - Cer: 27.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6254 | 0.36 | 1000 | 0.5211 | 39.0406 | | 0.3894 | 0.71 | 2000 | 0.3733 | 23.1574 | | 0.0932 | 1.07 | 3000 | 0.2990 | 24.4794 | | 0.0952 | 1.43 | 4000 | 0.2609 | 27.9801 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0