Upload peft_lora_whisper-large-v2.ipynb
Browse files- peft_lora_whisper-large-v2.ipynb +1109 -0
peft_lora_whisper-large-v2.ipynb
ADDED
@@ -0,0 +1,1109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "c219841f-493c-40f9-a6c9-3700f0c525d0",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# PEFT 库 LoRA 实战 - OpenAI Whisper-large-v2\n",
|
9 |
+
"\n",
|
10 |
+
"本教程使用 LoRA 在`OpenAI Whisper-large-v2`模型上实现`语音识别(ASR)`任务的微调训练。\n",
|
11 |
+
"\n",
|
12 |
+
"我们还结合了`int8` 量化进一步降低训练过程资源开销,同时保证了精度几乎不受影响。"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "markdown",
|
17 |
+
"id": "6d0a1e23-ea71-45d6-82d6-453077cf2d29",
|
18 |
+
"metadata": {},
|
19 |
+
"source": [
|
20 |
+
"## 全局参数设置"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 1,
|
26 |
+
"id": "19d11aa3-9a73-4ce9-b6c5-a65a2fcb07c3",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"text/plain": [
|
32 |
+
"1"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
"execution_count": 1,
|
36 |
+
"metadata": {},
|
37 |
+
"output_type": "execute_result"
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"source": [
|
41 |
+
"import os\n",
|
42 |
+
"os.environ[\"CUDA_DEVICE_ORDER\"]=\"PCI_BUS_ID\" # see issue #152\n",
|
43 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"2\"\n",
|
44 |
+
"\n",
|
45 |
+
"import torch\n",
|
46 |
+
"torch.cuda.device_count()"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": 2,
|
52 |
+
"id": "ccd00402-d821-485e-8703-fb16bcb56a9e",
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"model_name_or_path = \"openai/whisper-large-v2\"\n",
|
57 |
+
"language = \"Chinese (China)\"\n",
|
58 |
+
"language_abbr = \"zh-CN\"\n",
|
59 |
+
"task = \"transcribe\"\n",
|
60 |
+
"dataset_name = \"mozilla-foundation/common_voice_11_0\"\n",
|
61 |
+
"\n",
|
62 |
+
"batch_size=64"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "markdown",
|
67 |
+
"id": "cfffa1df-e51e-4026-9817-1cebddf0061a",
|
68 |
+
"metadata": {},
|
69 |
+
"source": [
|
70 |
+
"## 下载数据集 Common Voice\n",
|
71 |
+
"\n",
|
72 |
+
"Common Voice 11.0 数据集包含许多不同语言的录音,总时长达数小时。\n",
|
73 |
+
"\n",
|
74 |
+
"本教程以中文数据为例,展示如何使用 LoRA 在 Whisper-large-v2 上进行微调训练。\n",
|
75 |
+
"\n",
|
76 |
+
"首先,初始化一个DatasetDict结构,并将训练集(将训练+验证拆分为训练集)和测试集拆分好,按照中文数据集构建配置加载到内存中:"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 3,
|
82 |
+
"id": "21ff42f4-f3ec-46d3-b0c0-dd9ffbf7b50b",
|
83 |
+
"metadata": {
|
84 |
+
"scrolled": true
|
85 |
+
},
|
86 |
+
"outputs": [
|
87 |
+
{
|
88 |
+
"data": {
|
89 |
+
"text/plain": [
|
90 |
+
"{'client_id': '95368aab163e0387e4fd4991b4f2d8ccfbd4364bf656c860230501fd27dcedf087773e4695a6cf5de9c4f1d406d582283190d065cdfa36b0e2b060cffaca977e',\n",
|
91 |
+
" 'path': '/store/jxzhang/.cache/huggingface/datasets/downloads/extracted/edf8cf7fef3457433a3a59929c4c4809972172377467a8f189ac185f3d5e4b53/zh-CN_train_0/common_voice_zh-CN_33211332.mp3',\n",
|
92 |
+
" 'audio': {'path': '/store/jxzhang/.cache/huggingface/datasets/downloads/extracted/edf8cf7fef3457433a3a59929c4c4809972172377467a8f189ac185f3d5e4b53/zh-CN_train_0/common_voice_zh-CN_33211332.mp3',\n",
|
93 |
+
" 'array': array([-6.82121026e-13, -2.27373675e-12, -2.27373675e-12, ...,\n",
|
94 |
+
" 1.21667399e-05, 3.23003678e-06, -2.43066324e-07]),\n",
|
95 |
+
" 'sampling_rate': 48000},\n",
|
96 |
+
" 'sentence': '性喜温暖润湿气候且耐寒。',\n",
|
97 |
+
" 'up_votes': 2,\n",
|
98 |
+
" 'down_votes': 0,\n",
|
99 |
+
" 'age': '',\n",
|
100 |
+
" 'gender': '',\n",
|
101 |
+
" 'accent': '',\n",
|
102 |
+
" 'locale': 'zh-CN',\n",
|
103 |
+
" 'segment': ''}"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
"execution_count": 3,
|
107 |
+
"metadata": {},
|
108 |
+
"output_type": "execute_result"
|
109 |
+
}
|
110 |
+
],
|
111 |
+
"source": [
|
112 |
+
"from datasets import load_dataset\n",
|
113 |
+
"from datasets import load_dataset, DatasetDict\n",
|
114 |
+
"\n",
|
115 |
+
"common_voice = DatasetDict()\n",
|
116 |
+
"\n",
|
117 |
+
"common_voice[\"train\"] = load_dataset(dataset_name, language_abbr, split=\"train+validation\", trust_remote_code=True)\n",
|
118 |
+
"common_voice[\"test\"] = load_dataset(dataset_name, language_abbr, split=\"test\", trust_remote_code=True)\n",
|
119 |
+
"common_voice[\"train\"][0]"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "markdown",
|
124 |
+
"id": "3c81faa4-d8fe-4cc7-afe6-4c2615b9050f",
|
125 |
+
"metadata": {},
|
126 |
+
"source": [
|
127 |
+
"## 预处理训练数据集\n"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 4,
|
133 |
+
"id": "5822025f-7f8e-4141-8bfe-d8822d0da20f",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"from transformers import AutoFeatureExtractor, AutoTokenizer, AutoProcessor\n",
|
138 |
+
"\n",
|
139 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)\n",
|
140 |
+
"\n",
|
141 |
+
"tokenizer = AutoTokenizer.from_pretrained(\n",
|
142 |
+
" model_name_or_path, language=language, task=task)\n",
|
143 |
+
"\n",
|
144 |
+
"processor = AutoProcessor.from_pretrained(\n",
|
145 |
+
" model_name_or_path, language=language, task=task)"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "markdown",
|
150 |
+
"id": "f394e5cd-23b8-413e-8bde-88c3542b84fa",
|
151 |
+
"metadata": {},
|
152 |
+
"source": [
|
153 |
+
"#### 移除数据集中不必要的字段"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"execution_count": 5,
|
159 |
+
"id": "1690dc5a-c1f7-4556-9be3-d31ad888e52e",
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [],
|
162 |
+
"source": [
|
163 |
+
"common_voice = common_voice.remove_columns(\n",
|
164 |
+
" [\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"path\", \"segment\", \"up_votes\"]\n",
|
165 |
+
")"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"execution_count": 6,
|
171 |
+
"id": "309aff16-ea26-4474-af54-7ef244783999",
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [
|
174 |
+
{
|
175 |
+
"data": {
|
176 |
+
"text/plain": [
|
177 |
+
"{'audio': {'path': '/store/jxzhang/.cache/huggingface/datasets/downloads/extracted/edf8cf7fef3457433a3a59929c4c4809972172377467a8f189ac185f3d5e4b53/zh-CN_train_0/common_voice_zh-CN_33211332.mp3',\n",
|
178 |
+
" 'array': array([-6.82121026e-13, -2.27373675e-12, -2.27373675e-12, ...,\n",
|
179 |
+
" 1.21667399e-05, 3.23003678e-06, -2.43066324e-07]),\n",
|
180 |
+
" 'sampling_rate': 48000},\n",
|
181 |
+
" 'sentence': '性喜温暖润湿气候且耐寒。'}"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
"execution_count": 6,
|
185 |
+
"metadata": {},
|
186 |
+
"output_type": "execute_result"
|
187 |
+
}
|
188 |
+
],
|
189 |
+
"source": [
|
190 |
+
"common_voice[\"train\"][0]"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "markdown",
|
195 |
+
"id": "881546ab-72e4-4bcf-852f-a8be736164b7",
|
196 |
+
"metadata": {},
|
197 |
+
"source": [
|
198 |
+
"#### 降采样音频数据\n",
|
199 |
+
"\n",
|
200 |
+
"查看`common_voice` 数据集介绍,你会发现其音频是以48kHz的采样率进行采样的.\n",
|
201 |
+
"\n",
|
202 |
+
"而`Whisper`模型是在16kHZ的音频输入上预训练的,因此我们需要将音频输入降采样以匹配模型预训练时使用的采样率。\n",
|
203 |
+
"\n",
|
204 |
+
"通过在音频列上使用`cast_column`方法,并将`sampling_rate`设置为16kHz来对音频进行降采样。\n",
|
205 |
+
"\n",
|
206 |
+
"下次调用时,音频输入将实时重新取样:"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"cell_type": "code",
|
211 |
+
"execution_count": 7,
|
212 |
+
"id": "5fc451cc-e21e-473c-a702-d7d6ed098f91",
|
213 |
+
"metadata": {},
|
214 |
+
"outputs": [],
|
215 |
+
"source": [
|
216 |
+
"from datasets import Audio\n",
|
217 |
+
"\n",
|
218 |
+
"common_voice = common_voice.cast_column(\"audio\", Audio(sampling_rate=16000))"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": 8,
|
224 |
+
"id": "cc3d7fcc-7c34-41c8-9857-5a6e883f6115",
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [
|
227 |
+
{
|
228 |
+
"data": {
|
229 |
+
"text/plain": [
|
230 |
+
"{'audio': {'path': '/store/jxzhang/.cache/huggingface/datasets/downloads/extracted/edf8cf7fef3457433a3a59929c4c4809972172377467a8f189ac185f3d5e4b53/zh-CN_train_0/common_voice_zh-CN_33211332.mp3',\n",
|
231 |
+
" 'array': array([ 5.09317033e-11, -7.27595761e-12, -6.54836185e-11, ...,\n",
|
232 |
+
" -5.96661994e-06, 2.71382887e-05, 1.29687978e-05]),\n",
|
233 |
+
" 'sampling_rate': 16000},\n",
|
234 |
+
" 'sentence': '性喜温暖润湿气候且耐寒。'}"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
"execution_count": 8,
|
238 |
+
"metadata": {},
|
239 |
+
"output_type": "execute_result"
|
240 |
+
}
|
241 |
+
],
|
242 |
+
"source": [
|
243 |
+
"common_voice[\"train\"][0]"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "markdown",
|
248 |
+
"id": "ee55908f-3ea3-4aee-8062-6f8d3a6573b9",
|
249 |
+
"metadata": {},
|
250 |
+
"source": [
|
251 |
+
"### 整合以上数据处理为一个函数\n",
|
252 |
+
"\n",
|
253 |
+
"该数据预处理函数应该包括:\n",
|
254 |
+
"- 通过加载音频列将音频输入重新采样为16kHZ。\n",
|
255 |
+
"- 使用特征提取器从音频数组计算输入特征。\n",
|
256 |
+
"- 将句子列标记化为输入标签。"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": 9,
|
262 |
+
"id": "58f42c35-35ba-4d6b-9d15-095963cec67c",
|
263 |
+
"metadata": {},
|
264 |
+
"outputs": [],
|
265 |
+
"source": [
|
266 |
+
"def prepare_dataset(batch):\n",
|
267 |
+
" audio = batch[\"audio\"]\n",
|
268 |
+
" batch[\"input_features\"] = feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n",
|
269 |
+
" batch[\"labels\"] = tokenizer(batch[\"sentence\"]).input_ids\n",
|
270 |
+
" return batch"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "code",
|
275 |
+
"execution_count": 10,
|
276 |
+
"id": "392f7856-a720-40a7-af7e-40e185fc315b",
|
277 |
+
"metadata": {},
|
278 |
+
"outputs": [],
|
279 |
+
"source": [
|
280 |
+
"common_voice = common_voice.map(\n",
|
281 |
+
" prepare_dataset, remove_columns=common_voice.column_names[\"train\"]\n",
|
282 |
+
")"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "markdown",
|
287 |
+
"id": "84ec184e-d840-40b6-99af-d11392273442",
|
288 |
+
"metadata": {},
|
289 |
+
"source": [
|
290 |
+
"创建一个`DataCollator`类来将每个批次中的`attention_mask`填充到最大长度,并用`-100`替换填充值,以便在损失函数中被忽略。\n",
|
291 |
+
"\n",
|
292 |
+
"然后初始化数据收集器的实例:"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": 11,
|
298 |
+
"id": "4c89ffcf-c805-48c2-b7d3-ae01b687178c",
|
299 |
+
"metadata": {},
|
300 |
+
"outputs": [],
|
301 |
+
"source": [
|
302 |
+
"import torch\n",
|
303 |
+
"\n",
|
304 |
+
"from dataclasses import dataclass\n",
|
305 |
+
"from typing import Any, Dict, List, Union\n",
|
306 |
+
"\n",
|
307 |
+
"\n",
|
308 |
+
"@dataclass\n",
|
309 |
+
"class DataCollatorSpeechSeq2SeqWithPadding:\n",
|
310 |
+
" processor: Any\n",
|
311 |
+
"\n",
|
312 |
+
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
|
313 |
+
" input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n",
|
314 |
+
" batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
|
315 |
+
"\n",
|
316 |
+
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
|
317 |
+
" labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
|
318 |
+
"\n",
|
319 |
+
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
|
320 |
+
"\n",
|
321 |
+
" if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n",
|
322 |
+
" labels = labels[:, 1:]\n",
|
323 |
+
"\n",
|
324 |
+
" batch[\"labels\"] = labels\n",
|
325 |
+
"\n",
|
326 |
+
" return batch\n",
|
327 |
+
"\n",
|
328 |
+
"\n",
|
329 |
+
"data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"cell_type": "markdown",
|
334 |
+
"id": "80ecd4bc-01fd-4286-afe5-fe2639ae15a1",
|
335 |
+
"metadata": {},
|
336 |
+
"source": [
|
337 |
+
"## 训练模型"
|
338 |
+
]
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"cell_type": "code",
|
342 |
+
"execution_count": 12,
|
343 |
+
"id": "f9fcb121-fa5c-4c30-8bdc-9ab08ab75427",
|
344 |
+
"metadata": {},
|
345 |
+
"outputs": [],
|
346 |
+
"source": [
|
347 |
+
"from transformers import AutoModelForSpeechSeq2Seq\n",
|
348 |
+
"\n",
|
349 |
+
"model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path, load_in_8bit=True, device_map=\"auto\")"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": 13,
|
355 |
+
"id": "2cb016f1-e6e9-4fd8-9c8b-72fd23be92d3",
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
+
"source": [
|
359 |
+
"model.config.forced_decoder_ids = None\n",
|
360 |
+
"model.config.suppress_tokens = []"
|
361 |
+
]
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"cell_type": "markdown",
|
365 |
+
"id": "25ba1fa0-ea15-48d9-8c16-70df9f0b60b1",
|
366 |
+
"metadata": {},
|
367 |
+
"source": [
|
368 |
+
"为了准备模型进行int8量化,使用 `prepare_model_for_int8_training` 函数来处理模型:\n",
|
369 |
+
"- 将所有非int8模块转换为完全精度(fp32)以保持稳定性\n",
|
370 |
+
"- 在输入嵌入层上添加前向钩子,计算输入隐藏状态的梯度\n",
|
371 |
+
"- 启用渐变检查点以进行更高效的内存训练"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "code",
|
376 |
+
"execution_count": 14,
|
377 |
+
"id": "1ee34359-fe1b-48f1-827c-6a8ec4a53af7",
|
378 |
+
"metadata": {},
|
379 |
+
"outputs": [
|
380 |
+
{
|
381 |
+
"name": "stderr",
|
382 |
+
"output_type": "stream",
|
383 |
+
"text": [
|
384 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/peft/utils/other.py:141: FutureWarning: prepare_model_for_int8_training is deprecated and will be removed in a future version. Use prepare_model_for_kbit_training instead.\n",
|
385 |
+
" warnings.warn(\n"
|
386 |
+
]
|
387 |
+
}
|
388 |
+
],
|
389 |
+
"source": [
|
390 |
+
"from peft import prepare_model_for_int8_training\n",
|
391 |
+
"\n",
|
392 |
+
"model = prepare_model_for_int8_training(model)"
|
393 |
+
]
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"cell_type": "code",
|
397 |
+
"execution_count": null,
|
398 |
+
"id": "24b6f8a2-867f-4ed5-bad5-15ca9fd9547c",
|
399 |
+
"metadata": {},
|
400 |
+
"outputs": [],
|
401 |
+
"source": []
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"cell_type": "code",
|
405 |
+
"execution_count": 15,
|
406 |
+
"id": "cdf6bc9c-6d2c-4dbf-b09e-a89cb1041c46",
|
407 |
+
"metadata": {},
|
408 |
+
"outputs": [],
|
409 |
+
"source": [
|
410 |
+
"from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model\n",
|
411 |
+
"\n",
|
412 |
+
"config = LoraConfig(\n",
|
413 |
+
" r=8,\n",
|
414 |
+
" lora_alpha=64,\n",
|
415 |
+
" target_modules=[\"q_proj\", \"v_proj\"],\n",
|
416 |
+
" lora_dropout=0.05,\n",
|
417 |
+
" bias=\"none\")"
|
418 |
+
]
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"cell_type": "code",
|
422 |
+
"execution_count": 16,
|
423 |
+
"id": "b74c7508-e6f4-42d8-8aaf-fe83c5977c35",
|
424 |
+
"metadata": {},
|
425 |
+
"outputs": [
|
426 |
+
{
|
427 |
+
"name": "stdout",
|
428 |
+
"output_type": "stream",
|
429 |
+
"text": [
|
430 |
+
"trainable params: 3,932,160 || all params: 1,547,237,120 || trainable%: 0.25414074863974306\n"
|
431 |
+
]
|
432 |
+
}
|
433 |
+
],
|
434 |
+
"source": [
|
435 |
+
"model = get_peft_model(model, config)\n",
|
436 |
+
"model.print_trainable_parameters()"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "markdown",
|
441 |
+
"id": "1cc6b26a-3e54-4a46-9b36-a048b40a37d7",
|
442 |
+
"metadata": {},
|
443 |
+
"source": [
|
444 |
+
"### 演示需要,只训练了100 steps。建议同学改为默认的 3个 epochs 完整训练一个中文语音识别模型。"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "code",
|
449 |
+
"execution_count": 17,
|
450 |
+
"id": "11f259c8-dbcf-4a7f-bbb5-821ab104efee",
|
451 |
+
"metadata": {},
|
452 |
+
"outputs": [],
|
453 |
+
"source": [
|
454 |
+
"from transformers import Seq2SeqTrainingArguments\n",
|
455 |
+
"\n",
|
456 |
+
"# 设置序列到序列模型训练的参数\n",
|
457 |
+
"training_args = Seq2SeqTrainingArguments(\n",
|
458 |
+
" output_dir=\"models/whisper-large-v2-asr-int8\", # 指定模型输出和保存的目录\n",
|
459 |
+
" per_device_train_batch_size=batch_size, # 每个设备上的训练批量大小\n",
|
460 |
+
" gradient_accumulation_steps=1, # 梯度累积步数,在每次优化器步骤之前累积的更新步数\n",
|
461 |
+
" learning_rate=1e-3, # 学习率\n",
|
462 |
+
" warmup_steps=50, # 在训练初期增加学习率的步数,有助于稳定训练\n",
|
463 |
+
" # max_steps=100, # 训练总步数\n",
|
464 |
+
" num_train_epochs=3, # 训练的总轮数\n",
|
465 |
+
" evaluation_strategy=\"epoch\", # 设置评估策略,这里是在每个epoch结束时进行评估\n",
|
466 |
+
" fp16=True, # 启用混合精度训练,可以提高训练速度,同时减少内存使用\n",
|
467 |
+
" per_device_eval_batch_size=batch_size, # 每个设备上的评估批量大小\n",
|
468 |
+
" generation_max_length=128, # 生成任务的最大长度\n",
|
469 |
+
" logging_steps=25, # 指定日志记录的步骤,用于跟踪训练进度\n",
|
470 |
+
" remove_unused_columns=False, # 是否删除不使用的列,以减少数据处理开销\n",
|
471 |
+
" label_names=[\"labels\"], # 指定标签列的名称,用于训练过程中\n",
|
472 |
+
")"
|
473 |
+
]
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"cell_type": "markdown",
|
477 |
+
"id": "c57ee183-b16f-4313-97f6-0df6c0f5f467",
|
478 |
+
"metadata": {},
|
479 |
+
"source": [
|
480 |
+
"#### 训练过程保存状态的回调,长时期训练建议使用"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"cell_type": "code",
|
485 |
+
"execution_count": 18,
|
486 |
+
"id": "2ce443d9-f309-4c03-bd74-c6842292b713",
|
487 |
+
"metadata": {},
|
488 |
+
"outputs": [],
|
489 |
+
"source": [
|
490 |
+
"import os\n",
|
491 |
+
"from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR\n",
|
492 |
+
"from transformers import Seq2SeqTrainer, TrainerCallback, Seq2SeqTrainingArguments, TrainerState, TrainerControl\n",
|
493 |
+
"\n",
|
494 |
+
"class SavePeftModelCallback(TrainerCallback):\n",
|
495 |
+
" def on_save(\n",
|
496 |
+
" self,\n",
|
497 |
+
" args: Seq2SeqTrainingArguments,\n",
|
498 |
+
" state: TrainerState,\n",
|
499 |
+
" control: TrainerControl,\n",
|
500 |
+
" **kwargs,\n",
|
501 |
+
" ):\n",
|
502 |
+
" checkpoint_folder = os.path.join(args.output_dir, f\"{PREFIX_CHECKPOINT_DIR}-{state.global_step}\")\n",
|
503 |
+
"\n",
|
504 |
+
" peft_model_path = os.path.join(checkpoint_folder, \"adapter_model\")\n",
|
505 |
+
" kwargs[\"model\"].save_pretrained(peft_model_path)\n",
|
506 |
+
"\n",
|
507 |
+
" pytorch_model_path = os.path.join(checkpoint_folder, \"pytorch_model.bin\")\n",
|
508 |
+
" if os.path.exists(pytorch_model_path):\n",
|
509 |
+
" os.remove(pytorch_model_path)\n",
|
510 |
+
" return control"
|
511 |
+
]
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"cell_type": "code",
|
515 |
+
"execution_count": 19,
|
516 |
+
"id": "f8a52ed7-cae0-4aba-818e-87717430d908",
|
517 |
+
"metadata": {},
|
518 |
+
"outputs": [],
|
519 |
+
"source": [
|
520 |
+
"trainer = Seq2SeqTrainer(\n",
|
521 |
+
" args=training_args,\n",
|
522 |
+
" model=model,\n",
|
523 |
+
" train_dataset=common_voice[\"train\"],\n",
|
524 |
+
" eval_dataset=common_voice[\"test\"],\n",
|
525 |
+
" data_collator=data_collator,\n",
|
526 |
+
" tokenizer=processor.feature_extractor,\n",
|
527 |
+
" callbacks=[SavePeftModelCallback],\n",
|
528 |
+
")\n",
|
529 |
+
"model.config.use_cache = False"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 20,
|
535 |
+
"id": "6973bed7-8f53-4d55-966c-f037941e5ef3",
|
536 |
+
"metadata": {
|
537 |
+
"scrolled": true
|
538 |
+
},
|
539 |
+
"outputs": [
|
540 |
+
{
|
541 |
+
"name": "stderr",
|
542 |
+
"output_type": "stream",
|
543 |
+
"text": [
|
544 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
545 |
+
" warnings.warn(\n",
|
546 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/torch/utils/checkpoint.py:61: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
547 |
+
" warnings.warn(\n",
|
548 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
|
549 |
+
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"data": {
|
554 |
+
"text/html": [
|
555 |
+
"\n",
|
556 |
+
" <div>\n",
|
557 |
+
" \n",
|
558 |
+
" <progress value='1860' max='1860' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
559 |
+
" [1860/1860 7:48:09, Epoch 3/3]\n",
|
560 |
+
" </div>\n",
|
561 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
562 |
+
" <thead>\n",
|
563 |
+
" <tr style=\"text-align: left;\">\n",
|
564 |
+
" <th>Epoch</th>\n",
|
565 |
+
" <th>Training Loss</th>\n",
|
566 |
+
" <th>Validation Loss</th>\n",
|
567 |
+
" </tr>\n",
|
568 |
+
" </thead>\n",
|
569 |
+
" <tbody>\n",
|
570 |
+
" <tr>\n",
|
571 |
+
" <td>1</td>\n",
|
572 |
+
" <td>0.341900</td>\n",
|
573 |
+
" <td>0.264468</td>\n",
|
574 |
+
" </tr>\n",
|
575 |
+
" <tr>\n",
|
576 |
+
" <td>2</td>\n",
|
577 |
+
" <td>0.259600</td>\n",
|
578 |
+
" <td>0.248249</td>\n",
|
579 |
+
" </tr>\n",
|
580 |
+
" <tr>\n",
|
581 |
+
" <td>3</td>\n",
|
582 |
+
" <td>0.214400</td>\n",
|
583 |
+
" <td>0.248773</td>\n",
|
584 |
+
" </tr>\n",
|
585 |
+
" </tbody>\n",
|
586 |
+
"</table><p>"
|
587 |
+
],
|
588 |
+
"text/plain": [
|
589 |
+
"<IPython.core.display.HTML object>"
|
590 |
+
]
|
591 |
+
},
|
592 |
+
"metadata": {},
|
593 |
+
"output_type": "display_data"
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"name": "stderr",
|
597 |
+
"output_type": "stream",
|
598 |
+
"text": [
|
599 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
600 |
+
" warnings.warn(\n",
|
601 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/torch/utils/checkpoint.py:61: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
602 |
+
" warnings.warn(\n",
|
603 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
|
604 |
+
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
|
605 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
606 |
+
" warnings.warn(\n",
|
607 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/torch/utils/checkpoint.py:61: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
608 |
+
" warnings.warn(\n",
|
609 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
|
610 |
+
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
|
611 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
612 |
+
" warnings.warn(\n",
|
613 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/torch/utils/checkpoint.py:61: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
614 |
+
" warnings.warn(\n",
|
615 |
+
"/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
|
616 |
+
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n"
|
617 |
+
]
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"data": {
|
621 |
+
"text/plain": [
|
622 |
+
"TrainOutput(global_step=1860, training_loss=0.32258521408163093, metrics={'train_runtime': 28110.1202, 'train_samples_per_second': 4.23, 'train_steps_per_second': 0.066, 'total_flos': 2.531417002463232e+20, 'train_loss': 0.32258521408163093, 'epoch': 3.0})"
|
623 |
+
]
|
624 |
+
},
|
625 |
+
"execution_count": 20,
|
626 |
+
"metadata": {},
|
627 |
+
"output_type": "execute_result"
|
628 |
+
}
|
629 |
+
],
|
630 |
+
"source": [
|
631 |
+
"trainer.train()"
|
632 |
+
]
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"cell_type": "markdown",
|
636 |
+
"id": "620992c3-64f5-48f9-8e66-fdc5f6a27427",
|
637 |
+
"metadata": {},
|
638 |
+
"source": [
|
639 |
+
"### 保存 LoRA 模型"
|
640 |
+
]
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"cell_type": "code",
|
644 |
+
"execution_count": 21,
|
645 |
+
"id": "53310565-7313-46a7-acf1-215970fd4f8e",
|
646 |
+
"metadata": {},
|
647 |
+
"outputs": [],
|
648 |
+
"source": [
|
649 |
+
"model.save_pretrained(\"models/whisper-large-v2-asr-int8\")"
|
650 |
+
]
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"cell_type": "markdown",
|
654 |
+
"id": "dcfe9611-eee5-462f-8cb8-fed86eec76e0",
|
655 |
+
"metadata": {},
|
656 |
+
"source": [
|
657 |
+
"### 使用 Pipiline 加载 LoRA 模型,实现自动语音识别任务"
|
658 |
+
]
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"cell_type": "code",
|
662 |
+
"execution_count": 3,
|
663 |
+
"id": "426d7520-62cb-42bb-a4dd-000aa607b105",
|
664 |
+
"metadata": {},
|
665 |
+
"outputs": [
|
666 |
+
{
|
667 |
+
"data": {
|
668 |
+
"text/plain": [
|
669 |
+
"5.763907432556152"
|
670 |
+
]
|
671 |
+
},
|
672 |
+
"execution_count": 3,
|
673 |
+
"metadata": {},
|
674 |
+
"output_type": "execute_result"
|
675 |
+
}
|
676 |
+
],
|
677 |
+
"source": [
|
678 |
+
"from transformers import AutoModelForSpeechSeq2Seq\n",
|
679 |
+
"\n",
|
680 |
+
"my_model_name_or_path = \"yqzhangjx/whisper-large-v2-asr-int8\"\n",
|
681 |
+
"\n",
|
682 |
+
"model = AutoModelForSpeechSeq2Seq.from_pretrained(my_model_name_or_path, device_map=\"auto\")\n",
|
683 |
+
"\n",
|
684 |
+
"model.get_memory_footprint()/1024**3"
|
685 |
+
]
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"cell_type": "code",
|
689 |
+
"execution_count": 4,
|
690 |
+
"id": "7536c488-0526-4c12-baaf-b4f7c7075be6",
|
691 |
+
"metadata": {},
|
692 |
+
"outputs": [],
|
693 |
+
"source": [
|
694 |
+
"from transformers import AutoFeatureExtractor, AutoTokenizer, AutoProcessor\n",
|
695 |
+
"\n",
|
696 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)\n",
|
697 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, language=language, task=task)\n",
|
698 |
+
"processor = AutoProcessor.from_pretrained(model_name_or_path, language=language, task=task)"
|
699 |
+
]
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"cell_type": "code",
|
703 |
+
"execution_count": 5,
|
704 |
+
"id": "18181692-a143-44ee-b56c-e754d308e0ec",
|
705 |
+
"metadata": {},
|
706 |
+
"outputs": [],
|
707 |
+
"source": [
|
708 |
+
"test_audio = \"data/audio/test_zh.flac\""
|
709 |
+
]
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"cell_type": "code",
|
713 |
+
"execution_count": 6,
|
714 |
+
"id": "9d494647-082c-4e48-9486-7945618ae679",
|
715 |
+
"metadata": {},
|
716 |
+
"outputs": [],
|
717 |
+
"source": [
|
718 |
+
"from transformers import AutomaticSpeechRecognitionPipeline\n",
|
719 |
+
"\n",
|
720 |
+
"pipeline = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)\n",
|
721 |
+
"\n",
|
722 |
+
"forced_decoder_ids = processor.get_decoder_prompt_ids(language=\"chinese\", task=task)"
|
723 |
+
]
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"cell_type": "code",
|
727 |
+
"execution_count": 7,
|
728 |
+
"id": "c3eac486-169f-41ad-b9c3-69f2c27c3e1f",
|
729 |
+
"metadata": {},
|
730 |
+
"outputs": [],
|
731 |
+
"source": [
|
732 |
+
"with torch.cuda.amp.autocast():\n",
|
733 |
+
" text = pipeline(test_audio, generate_kwargs={\"forced_decoder_ids\": forced_decoder_ids}, max_new_tokens=255)[\"text\"]"
|
734 |
+
]
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"cell_type": "code",
|
738 |
+
"execution_count": 8,
|
739 |
+
"id": "cc4b24b2-c65b-4e63-8f16-26c72039a38d",
|
740 |
+
"metadata": {},
|
741 |
+
"outputs": [
|
742 |
+
{
|
743 |
+
"data": {
|
744 |
+
"text/plain": [
|
745 |
+
"'这是一段测试用于Whisper Large V2模型的自动语音识别测试。'"
|
746 |
+
]
|
747 |
+
},
|
748 |
+
"execution_count": 8,
|
749 |
+
"metadata": {},
|
750 |
+
"output_type": "execute_result"
|
751 |
+
}
|
752 |
+
],
|
753 |
+
"source": [
|
754 |
+
"text"
|
755 |
+
]
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"cell_type": "code",
|
759 |
+
"execution_count": null,
|
760 |
+
"id": "89f49787-6ab4-4bc1-91b8-a1c104c9feaf",
|
761 |
+
"metadata": {},
|
762 |
+
"outputs": [],
|
763 |
+
"source": []
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"cell_type": "markdown",
|
767 |
+
"id": "0285dd19-229e-4241-b680-71e25ab51dde",
|
768 |
+
"metadata": {},
|
769 |
+
"source": [
|
770 |
+
"#### Homework 1: 为中文语料的训练过程增加过程评估,观察 Train Loss 和 Validation Loss 变化;\n",
|
771 |
+
"#### Homework 2: LoRA 模型训练完成后,使用测试集进行完整的模型评估"
|
772 |
+
]
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"cell_type": "code",
|
776 |
+
"execution_count": null,
|
777 |
+
"id": "0c90ad4c-70eb-43d1-96ec-cc74c4bae345",
|
778 |
+
"metadata": {},
|
779 |
+
"outputs": [],
|
780 |
+
"source": []
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "markdown",
|
784 |
+
"id": "b24fccce-fec3-48a3-b43c-b9077788521d",
|
785 |
+
"metadata": {},
|
786 |
+
"source": [
|
787 |
+
"## 评估模型"
|
788 |
+
]
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"cell_type": "code",
|
792 |
+
"execution_count": 26,
|
793 |
+
"id": "b021c6a8-645d-44f7-970b-f410180787a6",
|
794 |
+
"metadata": {},
|
795 |
+
"outputs": [
|
796 |
+
{
|
797 |
+
"data": {
|
798 |
+
"application/vnd.jupyter.widget-view+json": {
|
799 |
+
"model_id": "5874cd7f7cba4c1d9d89092923e0b8a5",
|
800 |
+
"version_major": 2,
|
801 |
+
"version_minor": 0
|
802 |
+
},
|
803 |
+
"text/plain": [
|
804 |
+
"Downloading builder script: 0%| | 0.00/4.49k [00:00<?, ?B/s]"
|
805 |
+
]
|
806 |
+
},
|
807 |
+
"metadata": {},
|
808 |
+
"output_type": "display_data"
|
809 |
+
}
|
810 |
+
],
|
811 |
+
"source": [
|
812 |
+
"import evaluate\n",
|
813 |
+
"\n",
|
814 |
+
"# 词错误率(WER)是评估ASR模型常用的指标。从 Evaluate加载 WER 指标\n",
|
815 |
+
"metric = evaluate.load(\"wer\")"
|
816 |
+
]
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"cell_type": "code",
|
820 |
+
"execution_count": 27,
|
821 |
+
"id": "5156ce16-0e04-4e41-b308-52c6c9b2a20d",
|
822 |
+
"metadata": {
|
823 |
+
"scrolled": true
|
824 |
+
},
|
825 |
+
"outputs": [
|
826 |
+
{
|
827 |
+
"data": {
|
828 |
+
"text/plain": [
|
829 |
+
"PeftModel(\n",
|
830 |
+
" (base_model): LoraModel(\n",
|
831 |
+
" (model): WhisperForConditionalGeneration(\n",
|
832 |
+
" (model): WhisperModel(\n",
|
833 |
+
" (encoder): WhisperEncoder(\n",
|
834 |
+
" (conv1): Conv1d(80, 1280, kernel_size=(3,), stride=(1,), padding=(1,))\n",
|
835 |
+
" (conv2): Conv1d(1280, 1280, kernel_size=(3,), stride=(2,), padding=(1,))\n",
|
836 |
+
" (embed_positions): Embedding(1500, 1280)\n",
|
837 |
+
" (layers): ModuleList(\n",
|
838 |
+
" (0-31): 32 x WhisperEncoderLayer(\n",
|
839 |
+
" (self_attn): WhisperSdpaAttention(\n",
|
840 |
+
" (k_proj): Linear8bitLt(in_features=1280, out_features=1280, bias=False)\n",
|
841 |
+
" (v_proj): lora.Linear8bitLt(\n",
|
842 |
+
" (base_layer): Linear8bitLt(in_features=1280, out_features=1280, bias=True)\n",
|
843 |
+
" (lora_dropout): ModuleDict(\n",
|
844 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
845 |
+
" )\n",
|
846 |
+
" (lora_A): ModuleDict(\n",
|
847 |
+
" (default): Linear(in_features=1280, out_features=8, bias=False)\n",
|
848 |
+
" )\n",
|
849 |
+
" (lora_B): ModuleDict(\n",
|
850 |
+
" (default): Linear(in_features=8, out_features=1280, bias=False)\n",
|
851 |
+
" )\n",
|
852 |
+
" (lora_embedding_A): ParameterDict()\n",
|
853 |
+
" (lora_embedding_B): ParameterDict()\n",
|
854 |
+
" )\n",
|
855 |
+
" (q_proj): lora.Linear8bitLt(\n",
|
856 |
+
" (base_layer): Linear8bitLt(in_features=1280, out_features=1280, bias=True)\n",
|
857 |
+
" (lora_dropout): ModuleDict(\n",
|
858 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
859 |
+
" )\n",
|
860 |
+
" (lora_A): ModuleDict(\n",
|
861 |
+
" (default): Linear(in_features=1280, out_features=8, bias=False)\n",
|
862 |
+
" )\n",
|
863 |
+
" (lora_B): ModuleDict(\n",
|
864 |
+
" (default): Linear(in_features=8, out_features=1280, bias=False)\n",
|
865 |
+
" )\n",
|
866 |
+
" (lora_embedding_A): ParameterDict()\n",
|
867 |
+
" (lora_embedding_B): ParameterDict()\n",
|
868 |
+
" )\n",
|
869 |
+
" (out_proj): Linear8bitLt(in_features=1280, out_features=1280, bias=True)\n",
|
870 |
+
" )\n",
|
871 |
+
" (self_attn_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)\n",
|
872 |
+
" (activation_fn): GELUActivation()\n",
|
873 |
+
" (fc1): Linear8bitLt(in_features=1280, out_features=5120, bias=True)\n",
|
874 |
+
" (fc2): Linear8bitLt(in_features=5120, out_features=1280, bias=True)\n",
|
875 |
+
" (final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)\n",
|
876 |
+
" )\n",
|
877 |
+
" )\n",
|
878 |
+
" (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)\n",
|
879 |
+
" )\n",
|
880 |
+
" (decoder): WhisperDecoder(\n",
|
881 |
+
" (embed_tokens): Embedding(51865, 1280, padding_idx=50257)\n",
|
882 |
+
" (embed_positions): WhisperPositionalEmbedding(448, 1280)\n",
|
883 |
+
" (layers): ModuleList(\n",
|
884 |
+
" (0-31): 32 x WhisperDecoderLayer(\n",
|
885 |
+
" (self_attn): WhisperSdpaAttention(\n",
|
886 |
+
" (k_proj): Linear8bitLt(in_features=1280, out_features=1280, bias=False)\n",
|
887 |
+
" (v_proj): lora.Linear8bitLt(\n",
|
888 |
+
" (base_layer): Linear8bitLt(in_features=1280, out_features=1280, bias=True)\n",
|
889 |
+
" (lora_dropout): ModuleDict(\n",
|
890 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
891 |
+
" )\n",
|
892 |
+
" (lora_A): ModuleDict(\n",
|
893 |
+
" (default): Linear(in_features=1280, out_features=8, bias=False)\n",
|
894 |
+
" )\n",
|
895 |
+
" (lora_B): ModuleDict(\n",
|
896 |
+
" (default): Linear(in_features=8, out_features=1280, bias=False)\n",
|
897 |
+
" )\n",
|
898 |
+
" (lora_embedding_A): ParameterDict()\n",
|
899 |
+
" (lora_embedding_B): ParameterDict()\n",
|
900 |
+
" )\n",
|
901 |
+
" (q_proj): lora.Linear8bitLt(\n",
|
902 |
+
" (base_layer): Linear8bitLt(in_features=1280, out_features=1280, bias=True)\n",
|
903 |
+
" (lora_dropout): ModuleDict(\n",
|
904 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
905 |
+
" )\n",
|
906 |
+
" (lora_A): ModuleDict(\n",
|
907 |
+
" (default): Linear(in_features=1280, out_features=8, bias=False)\n",
|
908 |
+
" )\n",
|
909 |
+
" (lora_B): ModuleDict(\n",
|
910 |
+
" (default): Linear(in_features=8, out_features=1280, bias=False)\n",
|
911 |
+
" )\n",
|
912 |
+
" (lora_embedding_A): ParameterDict()\n",
|
913 |
+
" (lora_embedding_B): ParameterDict()\n",
|
914 |
+
" )\n",
|
915 |
+
" (out_proj): Linear8bitLt(in_features=1280, out_features=1280, bias=True)\n",
|
916 |
+
" )\n",
|
917 |
+
" (activation_fn): GELUActivation()\n",
|
918 |
+
" (self_attn_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)\n",
|
919 |
+
" (encoder_attn): WhisperSdpaAttention(\n",
|
920 |
+
" (k_proj): Linear8bitLt(in_features=1280, out_features=1280, bias=False)\n",
|
921 |
+
" (v_proj): lora.Linear8bitLt(\n",
|
922 |
+
" (base_layer): Linear8bitLt(in_features=1280, out_features=1280, bias=True)\n",
|
923 |
+
" (lora_dropout): ModuleDict(\n",
|
924 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
925 |
+
" )\n",
|
926 |
+
" (lora_A): ModuleDict(\n",
|
927 |
+
" (default): Linear(in_features=1280, out_features=8, bias=False)\n",
|
928 |
+
" )\n",
|
929 |
+
" (lora_B): ModuleDict(\n",
|
930 |
+
" (default): Linear(in_features=8, out_features=1280, bias=False)\n",
|
931 |
+
" )\n",
|
932 |
+
" (lora_embedding_A): ParameterDict()\n",
|
933 |
+
" (lora_embedding_B): ParameterDict()\n",
|
934 |
+
" )\n",
|
935 |
+
" (q_proj): lora.Linear8bitLt(\n",
|
936 |
+
" (base_layer): Linear8bitLt(in_features=1280, out_features=1280, bias=True)\n",
|
937 |
+
" (lora_dropout): ModuleDict(\n",
|
938 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
939 |
+
" )\n",
|
940 |
+
" (lora_A): ModuleDict(\n",
|
941 |
+
" (default): Linear(in_features=1280, out_features=8, bias=False)\n",
|
942 |
+
" )\n",
|
943 |
+
" (lora_B): ModuleDict(\n",
|
944 |
+
" (default): Linear(in_features=8, out_features=1280, bias=False)\n",
|
945 |
+
" )\n",
|
946 |
+
" (lora_embedding_A): ParameterDict()\n",
|
947 |
+
" (lora_embedding_B): ParameterDict()\n",
|
948 |
+
" )\n",
|
949 |
+
" (out_proj): Linear8bitLt(in_features=1280, out_features=1280, bias=True)\n",
|
950 |
+
" )\n",
|
951 |
+
" (encoder_attn_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)\n",
|
952 |
+
" (fc1): Linear8bitLt(in_features=1280, out_features=5120, bias=True)\n",
|
953 |
+
" (fc2): Linear8bitLt(in_features=5120, out_features=1280, bias=True)\n",
|
954 |
+
" (final_layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)\n",
|
955 |
+
" )\n",
|
956 |
+
" )\n",
|
957 |
+
" (layer_norm): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)\n",
|
958 |
+
" )\n",
|
959 |
+
" )\n",
|
960 |
+
" (proj_out): Linear(in_features=1280, out_features=51865, bias=False)\n",
|
961 |
+
" )\n",
|
962 |
+
" )\n",
|
963 |
+
")"
|
964 |
+
]
|
965 |
+
},
|
966 |
+
"execution_count": 27,
|
967 |
+
"metadata": {},
|
968 |
+
"output_type": "execute_result"
|
969 |
+
}
|
970 |
+
],
|
971 |
+
"source": [
|
972 |
+
"from torch.utils.data import DataLoader\n",
|
973 |
+
"from tqdm import tqdm\n",
|
974 |
+
"import numpy as np\n",
|
975 |
+
"import gc\n",
|
976 |
+
"\n",
|
977 |
+
"eval_dataloader = DataLoader(common_voice[\"test\"], batch_size=8, collate_fn=data_collator)\n",
|
978 |
+
"\n",
|
979 |
+
"model.eval()"
|
980 |
+
]
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"cell_type": "code",
|
984 |
+
"execution_count": 28,
|
985 |
+
"id": "9120279e-b10a-44ea-9275-2152ec204fae",
|
986 |
+
"metadata": {
|
987 |
+
"scrolled": true
|
988 |
+
},
|
989 |
+
"outputs": [
|
990 |
+
{
|
991 |
+
"name": "stderr",
|
992 |
+
"output_type": "stream",
|
993 |
+
"text": [
|
994 |
+
" 0%| | 0/1323 [00:00<?, ?it/s]/data/miniconda3/envs/jxzhang/lib/python3.11/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
|
995 |
+
" warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
|
996 |
+
"100%|██████████| 1323/1323 [3:13:07<00:00, 8.76s/it] \n"
|
997 |
+
]
|
998 |
+
}
|
999 |
+
],
|
1000 |
+
"source": [
|
1001 |
+
"for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
1002 |
+
" with torch.cuda.amp.autocast():\n",
|
1003 |
+
" with torch.no_grad():\n",
|
1004 |
+
" generated_tokens = (\n",
|
1005 |
+
" model.generate(\n",
|
1006 |
+
" input_features=batch[\"input_features\"].to(\"cuda\"),\n",
|
1007 |
+
" decoder_input_ids=batch[\"labels\"][:, :4].to(\"cuda\"),\n",
|
1008 |
+
" max_new_tokens=255,\n",
|
1009 |
+
" )\n",
|
1010 |
+
" .cpu()\n",
|
1011 |
+
" .numpy()\n",
|
1012 |
+
" )\n",
|
1013 |
+
" labels = batch[\"labels\"].cpu().numpy()\n",
|
1014 |
+
" labels = np.where(labels != -100, labels, tokenizer.pad_token_id)\n",
|
1015 |
+
" decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)\n",
|
1016 |
+
" decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n",
|
1017 |
+
" metric.add_batch(\n",
|
1018 |
+
" predictions=decoded_preds,\n",
|
1019 |
+
" references=decoded_labels,\n",
|
1020 |
+
" )\n",
|
1021 |
+
" del generated_tokens, labels, batch\n",
|
1022 |
+
" gc.collect()"
|
1023 |
+
]
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"cell_type": "code",
|
1027 |
+
"execution_count": 29,
|
1028 |
+
"id": "aad4d7e8-ee0d-484a-9ae7-490c8b9898a0",
|
1029 |
+
"metadata": {},
|
1030 |
+
"outputs": [
|
1031 |
+
{
|
1032 |
+
"name": "stdout",
|
1033 |
+
"output_type": "stream",
|
1034 |
+
"text": [
|
1035 |
+
"wer=54.73445473445473\n"
|
1036 |
+
]
|
1037 |
+
}
|
1038 |
+
],
|
1039 |
+
"source": [
|
1040 |
+
"wer = 100 * metric.compute()\n",
|
1041 |
+
"print(f\"{wer=}\")"
|
1042 |
+
]
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"cell_type": "code",
|
1046 |
+
"execution_count": 30,
|
1047 |
+
"id": "4120d924-c684-44af-8a1d-76aaf506bd08",
|
1048 |
+
"metadata": {},
|
1049 |
+
"outputs": [
|
1050 |
+
{
|
1051 |
+
"data": {
|
1052 |
+
"application/vnd.jupyter.widget-view+json": {
|
1053 |
+
"model_id": "65c2e25ce2434db2a59617adf7439064",
|
1054 |
+
"version_major": 2,
|
1055 |
+
"version_minor": 0
|
1056 |
+
},
|
1057 |
+
"text/plain": [
|
1058 |
+
"adapter_model.safetensors: 0%| | 0.00/15.8M [00:00<?, ?B/s]"
|
1059 |
+
]
|
1060 |
+
},
|
1061 |
+
"metadata": {},
|
1062 |
+
"output_type": "display_data"
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"data": {
|
1066 |
+
"text/plain": [
|
1067 |
+
"CommitInfo(commit_url='https://huggingface.co/yqzhangjx/whisper-large-v2-finetune-for-common_voice_11_0/commit/e9a78de42addc1cfb814188de95de3e97f9281c6', commit_message='Upload model', commit_description='', oid='e9a78de42addc1cfb814188de95de3e97f9281c6', pr_url=None, pr_revision=None, pr_num=None)"
|
1068 |
+
]
|
1069 |
+
},
|
1070 |
+
"execution_count": 30,
|
1071 |
+
"metadata": {},
|
1072 |
+
"output_type": "execute_result"
|
1073 |
+
}
|
1074 |
+
],
|
1075 |
+
"source": [
|
1076 |
+
"model.push_to_hub('whisper-large-v2-asr-int8')"
|
1077 |
+
]
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"cell_type": "code",
|
1081 |
+
"execution_count": null,
|
1082 |
+
"id": "b740c690-35ff-4375-b59f-3c6de5155ec0",
|
1083 |
+
"metadata": {},
|
1084 |
+
"outputs": [],
|
1085 |
+
"source": []
|
1086 |
+
}
|
1087 |
+
],
|
1088 |
+
"metadata": {
|
1089 |
+
"kernelspec": {
|
1090 |
+
"display_name": "Python 3 (ipykernel)",
|
1091 |
+
"language": "python",
|
1092 |
+
"name": "python3"
|
1093 |
+
},
|
1094 |
+
"language_info": {
|
1095 |
+
"codemirror_mode": {
|
1096 |
+
"name": "ipython",
|
1097 |
+
"version": 3
|
1098 |
+
},
|
1099 |
+
"file_extension": ".py",
|
1100 |
+
"mimetype": "text/x-python",
|
1101 |
+
"name": "python",
|
1102 |
+
"nbconvert_exporter": "python",
|
1103 |
+
"pygments_lexer": "ipython3",
|
1104 |
+
"version": "3.9.18"
|
1105 |
+
}
|
1106 |
+
},
|
1107 |
+
"nbformat": 4,
|
1108 |
+
"nbformat_minor": 5
|
1109 |
+
}
|