File size: 29,086 Bytes
87c126b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for LSGM. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------

import logging
import os
import math
import shutil
import time
import sys
import types

import torch
import torch.nn as nn
import numpy as np
import torch.distributed as dist
# from util.distributions import PixelNormal
from torch.cuda.amp import autocast

# from tensorboardX import SummaryWriter


class AvgrageMeter(object):

    def __init__(self):
        self.reset()

    def reset(self):
        self.avg = 0
        self.sum = 0
        self.cnt = 0

    def update(self, val, n=1):
        self.sum += val * n
        self.cnt += n
        self.avg = self.sum / self.cnt


class ExpMovingAvgrageMeter(object):

    def __init__(self, momentum=0.9):
        self.momentum = momentum
        self.reset()

    def reset(self):
        self.avg = 0

    def update(self, val):
        self.avg = (1. - self.momentum) * self.avg + self.momentum * val


class DummyDDP(nn.Module):
    def __init__(self, model):
        super(DummyDDP, self).__init__()
        self.module = model

    def forward(self, *input, **kwargs):
        return self.module(*input, **kwargs)


def count_parameters_in_M(model):
    return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6


def save_checkpoint(state, is_best, save):
    filename = os.path.join(save, 'checkpoint.pth.tar')
    torch.save(state, filename)
    if is_best:
        best_filename = os.path.join(save, 'model_best.pth.tar')
        shutil.copyfile(filename, best_filename)


def save(model, model_path):
    torch.save(model.state_dict(), model_path)


def load(model, model_path):
    model.load_state_dict(torch.load(model_path))


def create_exp_dir(path, scripts_to_save=None):
    if not os.path.exists(path):
        os.makedirs(path, exist_ok=True)
    print('Experiment dir : {}'.format(path))

    if scripts_to_save is not None:
        if not os.path.exists(os.path.join(path, 'scripts')):
            os.mkdir(os.path.join(path, 'scripts'))
        for script in scripts_to_save:
            dst_file = os.path.join(path, 'scripts', os.path.basename(script))
            shutil.copyfile(script, dst_file)


class Logger(object):
    def __init__(self, rank, save):
        # other libraries may set logging before arriving at this line.
        # by reloading logging, we can get rid of previous configs set by other libraries.
        from importlib import reload
        reload(logging)
        self.rank = rank
        if self.rank == 0:
            log_format = '%(asctime)s %(message)s'
            logging.basicConfig(stream=sys.stdout, level=logging.INFO,
                                format=log_format, datefmt='%m/%d %I:%M:%S %p')
            fh = logging.FileHandler(os.path.join(save, 'log.txt'))
            fh.setFormatter(logging.Formatter(log_format))
            logging.getLogger().addHandler(fh)
            self.start_time = time.time()

    def info(self, string, *args):
        if self.rank == 0:
            elapsed_time = time.time() - self.start_time
            elapsed_time = time.strftime(
                '(Elapsed: %H:%M:%S) ', time.gmtime(elapsed_time))
            if isinstance(string, str):
                string = elapsed_time + string
            else:
                logging.info(elapsed_time)
            logging.info(string, *args)


class Writer(object):
    def __init__(self, rank, save):
        self.rank = rank
        if self.rank == 0:
            self.writer = SummaryWriter(log_dir=save, flush_secs=20)

    def add_scalar(self, *args, **kwargs):
        if self.rank == 0:
            self.writer.add_scalar(*args, **kwargs)

    def add_figure(self, *args, **kwargs):
        if self.rank == 0:
            self.writer.add_figure(*args, **kwargs)

    def add_image(self, *args, **kwargs):
        if self.rank == 0:
            self.writer.add_image(*args, **kwargs)

    def add_histogram(self, *args, **kwargs):
        if self.rank == 0:
            self.writer.add_histogram(*args, **kwargs)

    def add_histogram_if(self, write, *args, **kwargs):
        if write and False:  # Used for debugging.
            self.add_histogram(*args, **kwargs)

    def close(self, *args, **kwargs):
        if self.rank == 0:
            self.writer.close()


def common_init(rank, seed, save_dir):
    # we use different seeds per gpu. But we sync the weights after model initialization.
    torch.manual_seed(rank + seed)
    np.random.seed(rank + seed)
    torch.cuda.manual_seed(rank + seed)
    torch.cuda.manual_seed_all(rank + seed)
    torch.backends.cudnn.benchmark = True

    # prepare logging and tensorboard summary
    logging = Logger(rank, save_dir)
    writer = Writer(rank, save_dir)

    return logging, writer


def reduce_tensor(tensor, world_size):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.ReduceOp.SUM)
    rt /= world_size
    return rt


def get_stride_for_cell_type(cell_type):
    if cell_type.startswith('normal') or cell_type.startswith('combiner'):
        stride = 1
    elif cell_type.startswith('down'):
        stride = 2
    elif cell_type.startswith('up'):
        stride = -1
    else:
        raise NotImplementedError(cell_type)

    return stride


def get_cout(cin, stride):
    if stride == 1:
        cout = cin
    elif stride == -1:
        cout = cin // 2
    elif stride == 2:
        cout = 2 * cin

    return cout


def kl_balancer_coeff(num_scales, groups_per_scale, fun):
    if fun == 'equal':
        coeff = torch.cat([torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda()
    elif fun == 'linear':
        coeff = torch.cat([(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)],
                          dim=0).cuda()
    elif fun == 'sqrt':
        coeff = torch.cat(
            [np.sqrt(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)],
            dim=0).cuda()
    elif fun == 'square':
        coeff = torch.cat(
            [np.square(2 ** i) / groups_per_scale[num_scales - i - 1] * torch.ones(groups_per_scale[num_scales - i - 1])
             for i in range(num_scales)], dim=0).cuda()
    else:
        raise NotImplementedError
    # convert min to 1.
    coeff /= torch.min(coeff)
    return coeff


def kl_per_group(kl_all):
    kl_vals = torch.mean(kl_all, dim=0)
    kl_coeff_i = torch.abs(kl_all)
    kl_coeff_i = torch.mean(kl_coeff_i, dim=0, keepdim=True) + 0.01

    return kl_coeff_i, kl_vals


def kl_balancer(kl_all, kl_coeff=1.0, kl_balance=False, alpha_i=None):
    if kl_balance and kl_coeff < 1.0:
        alpha_i = alpha_i.unsqueeze(0)

        kl_all = torch.stack(kl_all, dim=1)
        kl_coeff_i, kl_vals = kl_per_group(kl_all)
        total_kl = torch.sum(kl_coeff_i)

        kl_coeff_i = kl_coeff_i / alpha_i * total_kl
        kl_coeff_i = kl_coeff_i / torch.mean(kl_coeff_i, dim=1, keepdim=True)
        kl = torch.sum(kl_all * kl_coeff_i.detach(), dim=1)

        # for reporting
        kl_coeffs = kl_coeff_i.squeeze(0)
    else:
        kl_all = torch.stack(kl_all, dim=1)
        kl_vals = torch.mean(kl_all, dim=0)
        # kl = torch.sum(kl_all, dim=1)
        # kl = torch.mean(kl_all, dim=1)
        kl = torch.mean(kl_all)
        kl_coeffs = torch.ones(size=(len(kl_vals),))

    return kl_coeff * kl, kl_coeffs, kl_vals


def kl_per_group_vada(all_log_q, all_neg_log_p):
    assert len(all_log_q) == len(all_neg_log_p)

    kl_all_list = []
    kl_diag = []
    for log_q, neg_log_p in zip(all_log_q, all_neg_log_p):
        # kl_diag.append(torch.mean(torch.sum(neg_log_p + log_q, dim=[2, 3]), dim=0))
        kl_diag.append(torch.mean(torch.mean(neg_log_p + log_q, dim=[2, 3]), dim=0))
        # kl_all_list.append(torch.sum(neg_log_p + log_q, dim=[1, 2, 3]))
        kl_all_list.append(torch.mean(neg_log_p + log_q, dim=[1, 2, 3]))

    # kl_all = torch.stack(kl_all, dim=1)   # batch x num_total_groups
    kl_vals = torch.mean(torch.stack(kl_all_list, dim=1), dim=0)   # mean per group

    return kl_all_list, kl_vals, kl_diag


def kl_coeff(step, total_step, constant_step, min_kl_coeff, max_kl_coeff):
    # return max(min(max_kl_coeff * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff)
    return max(min(min_kl_coeff + (max_kl_coeff - min_kl_coeff) * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff)


def log_iw(decoder, x, log_q, log_p, crop=False):
    recon = reconstruction_loss(decoder, x, crop)
    return - recon - log_q + log_p


def reconstruction_loss(decoder, x, crop=False):
    from util.distributions import DiscMixLogistic

    recon = decoder.log_p(x)
    if crop:
        recon = recon[:, :, 2:30, 2:30]

    if isinstance(decoder, DiscMixLogistic):
        return - torch.sum(recon, dim=[1, 2])  # summation over RGB is done.
    else:
        return - torch.sum(recon, dim=[1, 2, 3])


def vae_terms(all_log_q, all_eps):
    from util.distributions import log_p_standard_normal

    # compute kl
    kl_all = []
    kl_diag = []
    log_p, log_q = 0., 0.
    for log_q_conv, eps in zip(all_log_q, all_eps):
        log_p_conv = log_p_standard_normal(eps)
        kl_per_var = log_q_conv - log_p_conv
        kl_diag.append(torch.mean(torch.sum(kl_per_var, dim=[2, 3]), dim=0))
        kl_all.append(torch.sum(kl_per_var, dim=[1, 2, 3]))
        log_q += torch.sum(log_q_conv, dim=[1, 2, 3])
        log_p += torch.sum(log_p_conv, dim=[1, 2, 3])
    return log_q, log_p, kl_all, kl_diag


def sum_log_q(all_log_q):
    log_q = 0.
    for log_q_conv in all_log_q:
        log_q += torch.sum(log_q_conv, dim=[1, 2, 3])

    return log_q


def cross_entropy_normal(all_eps):
    from util.distributions import log_p_standard_normal

    cross_entropy = 0.
    neg_log_p_per_group = []
    for eps in all_eps:
        neg_log_p_conv = - log_p_standard_normal(eps)
        neg_log_p = torch.sum(neg_log_p_conv, dim=[1, 2, 3])
        cross_entropy += neg_log_p
        neg_log_p_per_group.append(neg_log_p_conv)

    return cross_entropy, neg_log_p_per_group


def tile_image(batch_image, n, m=None):
    if m is None:
        m = n
    assert n * m == batch_image.size(0)
    channels, height, width = batch_image.size(1), batch_image.size(2), batch_image.size(3)
    batch_image = batch_image.view(n, m, channels, height, width)
    batch_image = batch_image.permute(2, 0, 3, 1, 4)  # n, height, n, width, c
    batch_image = batch_image.contiguous().view(channels, n * height, m * width)
    return batch_image


def average_gradients_naive(params, is_distributed):
    """ Gradient averaging. """
    if is_distributed:
        size = float(dist.get_world_size())
        for param in params:
            if param.requires_grad:
                param.grad.data /= size
                dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)


def average_gradients(params, is_distributed):
    """ Gradient averaging. """
    if is_distributed:
        if isinstance(params, types.GeneratorType):
            params = [p for p in params]

        size = float(dist.get_world_size())
        grad_data = []
        grad_size = []
        grad_shapes = []
        # Gather all grad values
        for param in params:
            if param.requires_grad:
                grad_size.append(param.grad.data.numel())
                grad_shapes.append(list(param.grad.data.shape))
                grad_data.append(param.grad.data.flatten())
        grad_data = torch.cat(grad_data).contiguous()

        # All-reduce grad values
        grad_data /= size
        dist.all_reduce(grad_data, op=dist.ReduceOp.SUM)

        # Put back the reduce grad values to parameters
        base = 0
        for i, param in enumerate(params):
            if param.requires_grad:
                param.grad.data = grad_data[base:base + grad_size[i]].view(grad_shapes[i])
                base += grad_size[i]


def average_params(params, is_distributed):
    """ parameter averaging. """
    if is_distributed:
        size = float(dist.get_world_size())
        for param in params:
            param.data /= size
            dist.all_reduce(param.data, op=dist.ReduceOp.SUM)


def average_tensor(t, is_distributed):
    if is_distributed:
        size = float(dist.get_world_size())
        dist.all_reduce(t.data, op=dist.ReduceOp.SUM)
        t.data /= size


def broadcast_params(params, is_distributed):
    if is_distributed:
        for param in params:
            dist.broadcast(param.data, src=0)


def num_output(dataset):
    if dataset in {'mnist',  'omniglot'}:
        return 28 * 28
    elif dataset == 'cifar10':
        return 3 * 32 * 32
    elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'):
        size = int(dataset.split('_')[-1])
        return 3 * size * size
    elif dataset == 'ffhq':
        return 3 * 256 * 256
    else:
        raise NotImplementedError


def get_input_size(dataset):
    if dataset in {'mnist', 'omniglot'}:
        return 32
    elif dataset == 'cifar10':
        return 32
    elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'):
        size = int(dataset.split('_')[-1])
        return size
    elif dataset == 'ffhq':
        return 256
    else:
        raise NotImplementedError


def get_bpd_coeff(dataset):
    n = num_output(dataset)
    return 1. / np.log(2.) / n


def get_channel_multiplier(dataset, num_scales):
    if dataset in {'cifar10', 'omniglot'}:
        mult = (1, 1, 1)
    elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}:
        if num_scales == 3:
            mult = (1, 1, 1)        # used for prior at 16
        elif num_scales == 4:
            mult = (1, 2, 2, 2)     # used for prior at 32
        elif num_scales == 5:
            mult = (1, 1, 2, 2, 2)  # used for prior at 64
    elif dataset == 'mnist':
        mult = (1, 1)
    else:
        raise NotImplementedError

    return mult


def get_attention_scales(dataset):
    if dataset in {'cifar10', 'omniglot'}:
        attn = (True, False, False)
    elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}:
        # attn = (False, True, False, False) # used for 32
        attn = (False, False, True, False, False)  # used for 64
    elif dataset == 'mnist':
        attn = (True, False)
    else:
        raise NotImplementedError

    return attn


def change_bit_length(x, num_bits):
    if num_bits != 8:
        x = torch.floor(x * 255 / 2 ** (8 - num_bits))
        x /= (2 ** num_bits - 1)
    return x


def view4D(t, size, inplace=True):
    """
     Equal to view(-1, 1, 1, 1).expand(size)
     Designed because of this bug:
     https://github.com/pytorch/pytorch/pull/48696
    """
    if inplace:
        return t.unsqueeze_(-1).unsqueeze_(-1).unsqueeze_(-1).expand(size)
    else:
        return t.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(size)


def get_arch_cells(arch_type, use_se):
    if arch_type == 'res_mbconv':
        arch_cells = dict()
        arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se}
        arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se}
        arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
        arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
        arch_cells['ar_nn'] = ['']
    elif arch_type == 'res_bnswish':
        arch_cells = dict()
        arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['up_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['normal_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['up_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['ar_nn'] = ['']
    elif arch_type == 'res_bnswish2':
        arch_cells = dict()
        arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
        arch_cells['down_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
        arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
        arch_cells['up_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
        arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
        arch_cells['down_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
        arch_cells['normal_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
        arch_cells['up_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
        arch_cells['ar_nn'] = ['']
    elif arch_type == 'res_mbconv_attn':
        arch_cells = dict()
        arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish', ], 'se': use_se, 'attn_type': 'attn'}
        arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se, 'attn_type': 'attn'}
        arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'}
        arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'}
        arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
        arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
        arch_cells['ar_nn'] = ['']
    elif arch_type == 'res_mbconv_attn_half':
        arch_cells = dict()
        arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'}
        arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'}
        arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
        arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
        arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
        arch_cells['ar_nn'] = ['']
    else:
        raise NotImplementedError

    return arch_cells


def groups_per_scale(num_scales, num_groups_per_scale):
    g = []
    n = num_groups_per_scale
    for s in range(num_scales):
        assert n >= 1
        g.append(n)
    return g


class PositionalEmbedding(nn.Module):
    def __init__(self, embedding_dim, scale):
        super(PositionalEmbedding, self).__init__()
        self.embedding_dim = embedding_dim
        self.scale = scale

    def forward(self, timesteps):
        assert len(timesteps.shape) == 1
        timesteps = timesteps * self.scale
        half_dim = self.embedding_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim) * -emb)
        emb = emb.to(device=timesteps.device)
        emb = timesteps[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        return emb


class RandomFourierEmbedding(nn.Module):
    def __init__(self, embedding_dim, scale):
        super(RandomFourierEmbedding, self).__init__()
        self.w = nn.Parameter(torch.randn(size=(1, embedding_dim // 2)) * scale, requires_grad=False)

    def forward(self, timesteps):
        emb = torch.mm(timesteps[:, None], self.w * 2 * 3.14159265359)
        return torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)


def init_temb_fun(embedding_type, embedding_scale, embedding_dim):
    if embedding_type == 'positional':
        temb_fun = PositionalEmbedding(embedding_dim, embedding_scale)
    elif embedding_type == 'fourier':
        temb_fun = RandomFourierEmbedding(embedding_dim, embedding_scale)
    else:
        raise NotImplementedError

    return temb_fun

def get_dae_model(args, num_input_channels):
    if args.dae_arch == 'ncsnpp':
        # we need to import NCSNpp after processes are launched on the multi gpu training.
        from score_sde.ncsnpp import NCSNpp
        dae = NCSNpp(args, num_input_channels)
    else:
        raise NotImplementedError

    return dae

def symmetrize_image_data(images):
    return 2.0 * images - 1.0


def unsymmetrize_image_data(images):
    return (images + 1.) / 2.


def normalize_symmetric(images):
    """
    Normalize images by dividing the largest intensity. Used for visualizing the intermediate steps.
    """
    b = images.shape[0]
    m, _ = torch.max(torch.abs(images).view(b, -1), dim=1)
    images /= (m.view(b, 1, 1, 1) + 1e-3)

    return images


@torch.jit.script
def soft_clamp5(x: torch.Tensor):
    return x.div(5.).tanh_().mul(5.)  # 5. * torch.tanh(x / 5.) <--> soft differentiable clamp between [-5, 5]

@torch.jit.script
def soft_clamp(x: torch.Tensor, a: torch.Tensor):
    return x.div(a).tanh_().mul(a)

class SoftClamp5(nn.Module):
    def __init__(self):
        super(SoftClamp5, self).__init__()

    def forward(self, x):
        return soft_clamp5(x)


def override_architecture_fields(args, stored_args, logging):
    # list of architecture parameters used in NVAE:
    architecture_fields = ['arch_instance', 'num_nf', 'num_latent_scales', 'num_groups_per_scale',
                           'num_latent_per_group', 'num_channels_enc', 'num_preprocess_blocks',
                           'num_preprocess_cells', 'num_cell_per_cond_enc', 'num_channels_dec',
                           'num_postprocess_blocks', 'num_postprocess_cells', 'num_cell_per_cond_dec',
                           'decoder_dist', 'num_x_bits', 'log_sig_q_scale',
                           'progressive_input_vae', 'channel_mult']

    # backward compatibility
    """ We have broken backward compatibility. No need to se these manually
    if not hasattr(stored_args, 'log_sig_q_scale'):
        logging.info('*** Setting %s manually ****', 'log_sig_q_scale')
        setattr(stored_args, 'log_sig_q_scale', 5.)

    if not hasattr(stored_args, 'latent_grad_cutoff'):
        logging.info('*** Setting %s manually ****', 'latent_grad_cutoff')
        setattr(stored_args, 'latent_grad_cutoff', 0.)

    if not hasattr(stored_args, 'progressive_input_vae'):
        logging.info('*** Setting %s manually ****', 'progressive_input_vae')
        setattr(stored_args, 'progressive_input_vae', 'none')

    if not hasattr(stored_args, 'progressive_output_vae'):
        logging.info('*** Setting %s manually ****', 'progressive_output_vae')
        setattr(stored_args, 'progressive_output_vae', 'none')
    """

    if not hasattr(stored_args, 'num_x_bits'):
        logging.info('*** Setting %s manually ****', 'num_x_bits')
        setattr(stored_args, 'num_x_bits', 8)

    if not hasattr(stored_args, 'channel_mult'):
        logging.info('*** Setting %s manually ****', 'channel_mult')
        setattr(stored_args, 'channel_mult', [1, 2])

    for f in architecture_fields:
        if not hasattr(args, f) or getattr(args, f) != getattr(stored_args, f):
            logging.info('Setting %s from loaded checkpoint', f)
            setattr(args, f, getattr(stored_args, f))


def init_processes(rank, size, fn, args):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = args.master_address
    os.environ['MASTER_PORT'] = '6020'
    torch.cuda.set_device(args.local_rank)
    dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=size)
    fn(args)
    dist.barrier()
    dist.destroy_process_group()


def sample_rademacher_like(y):
    return torch.randint(low=0, high=2, size=y.shape, device='cuda') * 2 - 1


def sample_gaussian_like(y):
    return torch.randn_like(y, device='cuda')


def trace_df_dx_hutchinson(f, x, noise, no_autograd):
    """
    Hutchinson's trace estimator for Jacobian df/dx, O(1) call to autograd
    """
    if no_autograd:
        # the following is compatible with checkpointing
        torch.sum(f * noise).backward()
        # torch.autograd.backward(tensors=[f], grad_tensors=[noise])
        jvp = x.grad
        trJ = torch.sum(jvp * noise, dim=[1, 2, 3])
        x.grad = None
    else:
        jvp = torch.autograd.grad(f, x, noise, create_graph=False)[0]
        trJ = torch.sum(jvp * noise, dim=[1, 2, 3])
        # trJ = torch.einsum('bijk,bijk->b', jvp, noise)  # we could test if there's a speed difference in einsum vs sum

    return trJ

def different_p_q_objectives(iw_sample_p, iw_sample_q):
    assert iw_sample_p in ['ll_uniform', 'drop_all_uniform', 'll_iw', 'drop_all_iw', 'drop_sigma2t_iw', 'rescale_iw',
                           'drop_sigma2t_uniform']
    assert iw_sample_q in ['reweight_p_samples', 'll_uniform', 'll_iw']
    # In these cases, we reuse the likelihood-based p-objective (either the uniform sampling version or the importance
    # sampling version) also for q.
    if iw_sample_p in ['ll_uniform', 'll_iw'] and iw_sample_q == 'reweight_p_samples':
        return False
    # In these cases, we are using a non-likelihood-based objective for p, and hence definitly need to use another q
    # objective.
    else:
        return True


# def decoder_output(dataset, logits, fixed_log_scales=None):
#     if dataset in {'cifar10', 'celeba_64', 'celeba_256', 'imagenet_32', 'imagenet_64', 'ffhq',
#                    'lsun_bedroom_128', 'lsun_bedroom_256', 'mnist', 'omniglot',
#                    'lsun_church_256'}:
#         return PixelNormal(logits, fixed_log_scales)
#     else:
#         raise NotImplementedError


def get_mixed_prediction(mixed_prediction, param, mixing_logit, mixing_component=None):
    if mixed_prediction:
        assert mixing_component is not None, 'Provide mixing component when mixed_prediction is enabled.'
        coeff = torch.sigmoid(mixing_logit)
        param = (1 - coeff) * mixing_component + coeff * param

    return param


def set_vesde_sigma_max(args, vae, train_queue, logging, is_distributed):
    logging.info('')
    logging.info('Calculating max. pairwise distance in latent space to set sigma2_max for VESDE...')

    eps_list = []
    vae.eval()
    for step, x in enumerate(train_queue):
        x = x[0] if len(x) > 1 else x
        x = x.cuda()
        x = symmetrize_image_data(x)

        # run vae
        with autocast(enabled=args.autocast_train):
            with torch.set_grad_enabled(False):
                logits, all_log_q, all_eps = vae(x)
                eps = torch.cat(all_eps, dim=1)

        eps_list.append(eps.detach())

    # concat eps tensor on each GPU and then gather all on all GPUs
    eps_this_rank = torch.cat(eps_list, dim=0)
    if is_distributed:
        eps_all_gathered = [torch.zeros_like(eps_this_rank)] * dist.get_world_size()
        dist.all_gather(eps_all_gathered, eps_this_rank)
        eps_full = torch.cat(eps_all_gathered, dim=0)
    else:
        eps_full = eps_this_rank

    # max pairwise distance squared between all latent encodings, is computed on CPU
    eps_full = eps_full.cpu().float()
    eps_full = eps_full.flatten(start_dim=1).unsqueeze(0)
    max_pairwise_dist_sqr = torch.cdist(eps_full, eps_full).square().max()
    max_pairwise_dist_sqr = max_pairwise_dist_sqr.cuda()

    # to be safe, we broadcast to all GPUs if we are in distributed environment. Shouldn't be necessary in principle.
    if is_distributed:
        dist.broadcast(max_pairwise_dist_sqr, src=0)

    args.sigma2_max = max_pairwise_dist_sqr.item()

    logging.info('Done! Set args.sigma2_max set to {}'.format(args.sigma2_max))
    logging.info('')
    return args


def mask_inactive_variables(x, is_active):
    x = x * is_active
    return x


def common_x_operations(x, num_x_bits):
    x = x[0] if len(x) > 1 else x
    x = x.cuda()

    # change bit length
    x = change_bit_length(x, num_x_bits)
    x = symmetrize_image_data(x)

    return x