File size: 11,122 Bytes
87c126b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
"""
Helpers to train with 16-bit precision.
"""
import numpy as np
import torch as th
import torch.nn as nn
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from . import logger
INITIAL_LOG_LOSS_SCALE = 20.0
def convert_module_to_f16(l):
"""
Convert primitive modules to float16.
"""
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
def convert_module_to_f32(l):
"""
Convert primitive modules to float32, undoing convert_module_to_f16().
"""
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
l.weight.data = l.weight.data.float()
if l.bias is not None:
l.bias.data = l.bias.data.float()
def make_master_params(param_groups_and_shapes):
"""
Copy model parameters into a (differently-shaped) list of full-precision
parameters.
"""
master_params = []
for param_group, shape in param_groups_and_shapes:
master_param = nn.Parameter(
_flatten_dense_tensors([
param.detach().float() for (_, param) in param_group
]).view(shape))
master_param.requires_grad = True
master_params.append(master_param)
return master_params
def model_grads_to_master_grads(param_groups_and_shapes, master_params):
"""
Copy the gradients from the model parameters into the master parameters
from make_master_params().
"""
for master_param, (param_group, shape) in zip(master_params,
param_groups_and_shapes):
master_param.grad = _flatten_dense_tensors([
param_grad_or_zeros(param) for (_, param) in param_group
]).view(shape)
def master_params_to_model_params(param_groups_and_shapes, master_params):
"""
Copy the master parameter data back into the model parameters.
"""
# Without copying to a list, if a generator is passed, this will
# silently not copy any parameters.
for master_param, (param_group, _) in zip(master_params,
param_groups_and_shapes):
for (_, param), unflat_master_param in zip(
param_group,
unflatten_master_params(param_group, master_param.view(-1))):
param.detach().copy_(unflat_master_param)
def unflatten_master_params(param_group, master_param):
return _unflatten_dense_tensors(master_param,
[param for (_, param) in param_group])
def get_param_groups_and_shapes(named_model_params):
named_model_params = list(named_model_params)
scalar_vector_named_params = (
[(n, p) for (n, p) in named_model_params if p.ndim <= 1],
(-1),
)
matrix_named_params = (
[(n, p) for (n, p) in named_model_params if p.ndim > 1],
(1, -1),
)
return [scalar_vector_named_params, matrix_named_params]
def master_params_to_state_dict(model, param_groups_and_shapes, master_params,
use_fp16):
if use_fp16:
state_dict = model.state_dict()
for master_param, (param_group, _) in zip(master_params,
param_groups_and_shapes):
for (name, _), unflat_master_param in zip(
param_group,
unflatten_master_params(param_group,
master_param.view(-1))):
assert name in state_dict
state_dict[name] = unflat_master_param
else:
state_dict = model.state_dict()
for i, (name, _value) in enumerate(model.named_parameters()):
assert name in state_dict
state_dict[name] = master_params[i]
return state_dict
def state_dict_to_master_params(model, state_dict, use_fp16):
if use_fp16:
named_model_params = [(name, state_dict[name])
for name, _ in model.named_parameters()]
param_groups_and_shapes = get_param_groups_and_shapes(
named_model_params)
master_params = make_master_params(param_groups_and_shapes)
else:
master_params = [
state_dict[name] for name, _ in model.named_parameters()
]
return master_params
def zero_master_grads(master_params):
for param in master_params:
param.grad = None
def zero_grad(model_params):
for param in model_params:
# Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group
if param.grad is not None:
param.grad.detach_()
param.grad.zero_()
def param_grad_or_zeros(param):
if param.grad is not None:
return param.grad.data.detach()
else:
return th.zeros_like(param)
class MixedPrecisionTrainer:
def __init__(self,
*,
model,
use_fp16=False,
use_amp=False,
fp16_scale_growth=1e-3,
initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE,
model_name='ddpm',
submodule_name='',
model_params=None):
self.model_name = model_name
self.model = model
self.use_fp16 = use_fp16
self.use_amp = use_amp
if self.use_amp:
# https://github.com/pytorch/pytorch/issues/40497#issuecomment-1262373602
# https://github.com/pytorch/pytorch/issues/111739
self.scaler = th.cuda.amp.GradScaler(enabled=use_amp, init_scale=2**15, growth_interval=100)
logger.log(model_name, 'enables AMP to accelerate training')
else:
logger.log(model_name, 'not enables AMP to accelerate training')
self.fp16_scale_growth = fp16_scale_growth
self.model_params = list(self.model.parameters(
)) if model_params is None else list(model_params) if not isinstance(
model_params, list) else model_params
self.master_params = self.model_params
self.param_groups_and_shapes = None
self.lg_loss_scale = initial_lg_loss_scale
if self.use_fp16:
self.param_groups_and_shapes = get_param_groups_and_shapes(
self.model.named_parameters())
self.master_params = make_master_params(
self.param_groups_and_shapes)
self.model.convert_to_fp16()
def zero_grad(self):
zero_grad(self.model_params)
def backward(self, loss: th.Tensor, disable_amp=False, **kwargs):
"""**kwargs: retain_graph=True
"""
if self.use_fp16:
loss_scale = 2**self.lg_loss_scale
(loss * loss_scale).backward(**kwargs)
elif self.use_amp and not disable_amp:
self.scaler.scale(loss).backward(**kwargs)
else:
loss.backward(**kwargs)
# def optimize(self, opt: th.optim.Optimizer, clip_grad=False):
def optimize(self, opt: th.optim.Optimizer, clip_grad=True):
if self.use_fp16:
return self._optimize_fp16(opt)
elif self.use_amp:
return self._optimize_amp(opt, clip_grad)
else:
return self._optimize_normal(opt, clip_grad)
def _optimize_fp16(self, opt: th.optim.Optimizer):
logger.logkv_mean("lg_loss_scale", self.lg_loss_scale)
model_grads_to_master_grads(self.param_groups_and_shapes,
self.master_params)
grad_norm, param_norm = self._compute_norms(
grad_scale=2**self.lg_loss_scale)
if check_overflow(grad_norm):
self.lg_loss_scale -= 1
logger.log(
f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
zero_master_grads(self.master_params)
return False
logger.logkv_mean("grad_norm", grad_norm)
logger.logkv_mean("param_norm", param_norm)
for p in self.master_params:
p.grad.mul_(1.0 / (2**self.lg_loss_scale))
opt.step()
zero_master_grads(self.master_params)
master_params_to_model_params(self.param_groups_and_shapes,
self.master_params)
self.lg_loss_scale += self.fp16_scale_growth
return True
def _optimize_amp(self, opt: th.optim.Optimizer, clip_grad=False):
# https://pytorch.org/docs/stable/notes/amp_examples.html#gradient-clipping
assert clip_grad
self.scaler.unscale_(opt) # to calculate accurate gradients
if clip_grad:
th.nn.utils.clip_grad_norm_( # type: ignore
self.master_params,
5.0,
norm_type=2,
error_if_nonfinite=False,
foreach=True,
) # clip before compute_norm
grad_norm, param_norm = self._compute_norms()
logger.logkv_mean("grad_norm", grad_norm)
logger.logkv_mean("param_norm", param_norm)
self.scaler.step(opt)
self.scaler.update()
return True
def _optimize_normal(self, opt: th.optim.Optimizer, clip_grad:bool=False):
assert clip_grad
if clip_grad:
th.nn.utils.clip_grad_norm_( # type: ignore
self.master_params,
5.0,
norm_type=2,
error_if_nonfinite=False,
foreach=True,
) # clip before compute_norm
grad_norm, param_norm = self._compute_norms()
logger.logkv_mean("grad_norm", grad_norm)
logger.logkv_mean("param_norm", param_norm)
opt.step()
return True
def _compute_norms(self, grad_scale=1.0):
grad_norm = 0.0
param_norm = 0.0
for p in self.master_params:
with th.no_grad():
param_norm += th.norm(p, p=2, dtype=th.float32).item()**2
if p.grad is not None:
grad_norm += th.norm(p.grad, p=2,
dtype=th.float32).item()**2
return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm)
def master_params_to_state_dict(self, master_params, model=None):
if model is None:
model = self.model
return master_params_to_state_dict(model, self.param_groups_and_shapes,
master_params, self.use_fp16)
def state_dict_to_master_params(self, state_dict, model=None):
if model is None:
model = self.model
return state_dict_to_master_params(model, state_dict, self.use_fp16)
def state_dict_to_master_params_given_submodule_name(
self, state_dict, submodule_name):
return state_dict_to_master_params(getattr(self.model, submodule_name),
state_dict, self.use_fp16)
def check_overflow(value):
return (value == float("inf")) or (value == -float("inf")) or (value
!= value)
|