File size: 18,787 Bytes
87c126b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import copy
from pdb import set_trace as st
import functools
import os
import numpy as np
import blobfile as bf
import torch as th
import torch.distributed as dist
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from . import dist_util, logger
from .fp16_util import MixedPrecisionTrainer
from .nn import update_ema
from .resample import LossAwareSampler, UniformSampler
from pathlib import Path
# For ImageNet experiments, this was a good default value.
# We found that the lg_loss_scale quickly climbed to
# 20-21 within the first ~1K steps of training.
INITIAL_LOG_LOSS_SCALE = 20.0
# use_amp = True
# use_amp = False
# if use_amp:
# logger.log('ddpm use AMP to accelerate training')
class TrainLoop:
def __init__(
self,
*,
model,
diffusion,
data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=1e-3,
schedule_sampler=None,
weight_decay=0.0,
lr_anneal_steps=0,
use_amp=False,
model_name='ddpm',
**kwargs
):
self.kwargs = kwargs
self.pool_512 = th.nn.AdaptiveAvgPool2d((512, 512))
self.pool_256 = th.nn.AdaptiveAvgPool2d((256, 256))
self.pool_128 = th.nn.AdaptiveAvgPool2d((128, 128))
self.pool_64 = th.nn.AdaptiveAvgPool2d((64, 64))
self.use_amp = use_amp
self.model_name = model_name
self.model = model
self.diffusion = diffusion
self.data = data
self.batch_size = batch_size
self.microbatch = microbatch if microbatch > 0 else batch_size
self.lr = lr
self.ema_rate = ([ema_rate] if isinstance(ema_rate, float) else
[float(x) for x in ema_rate.split(",")])
self.log_interval = log_interval
self.save_interval = save_interval
self.resume_checkpoint = resume_checkpoint
self.use_fp16 = use_fp16
self.fp16_scale_growth = fp16_scale_growth
self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
self.weight_decay = weight_decay
self.lr_anneal_steps = lr_anneal_steps
self.step = 0
self.resume_step = 0
self.global_batch = self.batch_size * dist.get_world_size()
self.sync_cuda = th.cuda.is_available()
self._setup_model()
self._load_model()
self._setup_opt()
def _load_model(self):
self._load_and_sync_parameters()
def _setup_opt(self):
self.opt = AdamW(self.mp_trainer.master_params,
lr=self.lr,
weight_decay=self.weight_decay)
def _setup_model(self):
self.mp_trainer = MixedPrecisionTrainer(
model=self.model,
use_fp16=self.use_fp16,
fp16_scale_growth=self.fp16_scale_growth,
use_amp=self.use_amp,
model_name=self.model_name
)
if self.resume_step:
self._load_optimizer_state()
# Model was resumed, either due to a restart or a checkpoint
# being specified at the command line.
self.ema_params = [
self._load_ema_parameters(rate) for rate in self.ema_rate
]
else:
self.ema_params = [
copy.deepcopy(self.mp_trainer.master_params)
for _ in range(len(self.ema_rate))
]
# for compatability
# print('creating DDP')
if th.cuda.is_available():
self.use_ddp = True
self.ddpm_model = self.model
self.ddp_model = DDP(
self.model,
device_ids=[dist_util.dev()],
output_device=dist_util.dev(),
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=False,
)
else:
if dist.get_world_size() > 1:
logger.warn("Distributed training requires CUDA. "
"Gradients will not be synchronized properly!")
self.use_ddp = False
self.ddp_model = self.model
# print('creating DDP done')
def _load_and_sync_parameters(self):
resume_checkpoint, resume_step = find_resume_checkpoint(
) or self.resume_checkpoint
if resume_checkpoint:
if not Path(resume_checkpoint).exists():
logger.log(
f"failed to load model from checkpoint: {resume_checkpoint}, not exist"
)
return
# self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
self.resume_step = resume_step # TODO, EMA part
if dist.get_rank() == 0:
logger.log(
f"loading model from checkpoint: {resume_checkpoint}...")
# if model is None:
# model = self.model
self.model.load_state_dict(
dist_util.load_state_dict(
resume_checkpoint,
map_location=dist_util.dev(),
))
# ! debugging, remove to check which key fails.
dist_util.sync_params(self.model.parameters())
# dist_util.sync_params(self.model.named_parameters())
def _load_ema_parameters(self,
rate,
model=None,
mp_trainer=None,
model_name='ddpm'):
if mp_trainer is None:
mp_trainer = self.mp_trainer
if model is None:
model = self.model
ema_params = copy.deepcopy(mp_trainer.master_params)
main_checkpoint, _ = find_resume_checkpoint(
self.resume_checkpoint, model_name) or self.resume_checkpoint
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step,
rate, model_name)
if ema_checkpoint:
if dist_util.get_rank() == 0:
if not Path(ema_checkpoint).exists():
logger.log(
f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist"
)
return
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
map_location = {
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
} # configure map_location properly
state_dict = dist_util.load_state_dict(
ema_checkpoint, map_location=map_location)
model_ema_state_dict = model.state_dict()
for k, v in state_dict.items():
if k in model_ema_state_dict.keys() and v.size(
) == model_ema_state_dict[k].size():
model_ema_state_dict[k] = v
# elif 'IN' in k and model_name == 'rec' and getattr(model.decoder, 'decomposed_IN', False):
# model_ema_state_dict[k.replace('IN', 'superresolution.norm.norm_layer')] = v # decomposed IN
else:
print('ignore key: ', k, ": ", v.size())
ema_params = mp_trainer.state_dict_to_master_params(
model_ema_state_dict)
del state_dict
# print('ema mark 3, ', model_name, flush=True)
if dist_util.get_world_size() > 1:
dist_util.sync_params(ema_params)
# print('ema mark 4, ', model_name, flush=True)
# del ema_params
return ema_params
def _load_ema_parameters_freezeAE(
self,
rate,
model,
# mp_trainer=None,
model_name='rec'):
# if mp_trainer is None:
# mp_trainer = self.mp_trainer
# if model is None:
# model = self.model_rec
# ema_params = copy.deepcopy(mp_trainer.master_params)
main_checkpoint, _ = find_resume_checkpoint(
self.resume_checkpoint, model_name) or self.resume_checkpoint
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step,
rate, model_name)
if ema_checkpoint:
if dist_util.get_rank() == 0:
if not Path(ema_checkpoint).exists():
logger.log(
f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist"
)
return
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
map_location = {
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
} # configure map_location properly
state_dict = dist_util.load_state_dict(
ema_checkpoint, map_location=map_location)
model_ema_state_dict = model.state_dict()
for k, v in state_dict.items():
if k in model_ema_state_dict.keys() and v.size(
) == model_ema_state_dict[k].size():
model_ema_state_dict[k] = v
else:
print('ignore key: ', k, ": ", v.size())
ema_params = mp_trainer.state_dict_to_master_params(
model_ema_state_dict)
del state_dict
# print('ema mark 3, ', model_name, flush=True)
if dist_util.get_world_size() > 1:
dist_util.sync_params(ema_params)
# print('ema mark 4, ', model_name, flush=True)
# del ema_params
return ema_params
# def _load_ema_parameters(self, rate):
# ema_params = copy.deepcopy(self.mp_trainer.master_params)
# main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint
# ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
# if ema_checkpoint:
# if dist.get_rank() == 0:
# logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
# state_dict = dist_util.load_state_dict(
# ema_checkpoint, map_location=dist_util.dev()
# )
# ema_params = self.mp_trainer.state_dict_to_master_params(state_dict)
# dist_util.sync_params(ema_params)
# return ema_params
def _load_optimizer_state(self):
main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint
opt_checkpoint = bf.join(bf.dirname(main_checkpoint),
f"opt{self.resume_step:06}.pt")
if bf.exists(opt_checkpoint):
logger.log(
f"loading optimizer state from checkpoint: {opt_checkpoint}")
state_dict = dist_util.load_state_dict(
opt_checkpoint, map_location=dist_util.dev())
self.opt.load_state_dict(state_dict)
def run_loop(self):
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
batch, cond = next(self.data)
self.run_step(batch, cond)
if self.step % self.log_interval == 0:
logger.dumpkvs()
if self.step % self.save_interval == 0:
self.save()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
def run_step(self, batch, cond):
self.forward_backward(batch, cond)
took_step = self.mp_trainer.optimize(self.opt)
if took_step:
self._update_ema()
self._anneal_lr()
self.log_step()
def forward_backward(self, batch, cond):
self.mp_trainer.zero_grad()
for i in range(0, batch.shape[0], self.microbatch):
# st()
with th.autocast(device_type=dist_util.dev(),
dtype=th.float16,
enabled=self.mp_trainer.use_amp):
micro = batch[i:i + self.microbatch].to(dist_util.dev())
micro_cond = {
k: v[i:i + self.microbatch].to(dist_util.dev())
for k, v in cond.items()
}
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(
micro.shape[0], dist_util.dev())
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro,
t,
model_kwargs=micro_cond,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach())
loss = (losses["loss"] * weights).mean()
log_loss_dict(self.diffusion, t,
{k: v * weights
for k, v in losses.items()})
self.mp_trainer.backward(loss)
def _update_ema(self):
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.mp_trainer.master_params, rate=rate)
def _anneal_lr(self):
if not self.lr_anneal_steps:
return
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
logger.logkv("samples",
(self.step + self.resume_step + 1) * self.global_batch)
def save(self):
def save_checkpoint(rate, params):
state_dict = self.mp_trainer.master_params_to_state_dict(params)
if dist.get_rank() == 0:
logger.log(f"saving model {rate}...")
if not rate:
filename = f"model{(self.step+self.resume_step):07d}.pt"
else:
filename = f"ema_{rate}_{(self.step+self.resume_step):07d}.pt"
with bf.BlobFile(bf.join(get_blob_logdir(), filename),
"wb") as f:
th.save(state_dict, f)
save_checkpoint(0, self.mp_trainer.master_params)
for rate, params in zip(self.ema_rate, self.ema_params):
save_checkpoint(rate, params)
if dist.get_rank() == 0:
with bf.BlobFile(
bf.join(get_blob_logdir(),
f"opt{(self.step+self.resume_step):07d}.pt"),
"wb",
) as f:
th.save(self.opt.state_dict(), f)
dist.barrier()
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
# split1 = Path(filename).stem[-6:]
split1 = Path(filename).stem[-7:]
# split = filename.split("model")
# if len(split) < 2:
# return 0
# split1 = split[-1].split(".")[0]
try:
return int(split1)
except ValueError:
print('fail to load model step', split1)
return 0
def get_blob_logdir():
# You can change this to be a separate path to save checkpoints to
# a blobstore or some external drive.
return logger.get_dir()
def find_resume_checkpoint(resume_checkpoint='', model_name='ddpm'):
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
if resume_checkpoint != '':
step = parse_resume_step_from_filename(resume_checkpoint)
split = resume_checkpoint.split("model")
resume_ckpt_path = str(
Path(split[0]) / f'model_{model_name}{step:07d}.pt')
else:
resume_ckpt_path = ''
step = 0
return resume_ckpt_path, step
def find_ema_checkpoint(main_checkpoint, step, rate, model_name=''):
if main_checkpoint is None:
return None
if model_name == '':
filename = f"ema_{rate}_{(step):07d}.pt"
else:
filename = f"ema_{model_name}_{rate}_{(step):07d}.pt"
path = bf.join(bf.dirname(main_checkpoint), filename)
# print(path)
# st()
if bf.exists(path):
print('fine ema model', path)
return path
else:
print('fail to find ema model', path)
return None
def log_loss_dict(diffusion, ts, losses):
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(),
values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
def log_rec3d_loss_dict(loss_dict):
for key, values in loss_dict.items():
try:
logger.logkv_mean(key, values.mean().item())
except:
print('type error:', key)
def calc_average_loss(all_loss_dicts, verbose=True):
all_scores = {} # todo, defaultdict
mean_all_scores = {}
for loss_dict in all_loss_dicts:
for k, v in loss_dict.items():
v = v.item()
if k not in all_scores:
# all_scores[f'{k}_val'] = [v]
all_scores[k] = [v]
else:
all_scores[k].append(v)
for k, v in all_scores.items():
mean = np.mean(v)
std = np.std(v)
if k in ['loss_lpis', 'loss_ssim']:
mean = 1 - mean
result_str = '{} average loss is {:.4f} +- {:.4f}'.format(k, mean, std)
mean_all_scores[k] = mean
if verbose:
print(result_str)
val_scores_for_logging = {
f'{k}_val': v
for k, v in mean_all_scores.items()
}
return val_scores_for_logging |