File size: 18,787 Bytes
87c126b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import copy
from pdb import set_trace as st
import functools
import os
import numpy as np

import blobfile as bf
import torch as th
import torch.distributed as dist
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW

from . import dist_util, logger
from .fp16_util import MixedPrecisionTrainer
from .nn import update_ema
from .resample import LossAwareSampler, UniformSampler

from pathlib import Path

# For ImageNet experiments, this was a good default value.
# We found that the lg_loss_scale quickly climbed to
# 20-21 within the first ~1K steps of training.
INITIAL_LOG_LOSS_SCALE = 20.0

# use_amp = True
# use_amp = False
# if use_amp:
# logger.log('ddpm use AMP to accelerate training')


class TrainLoop:

    def __init__(
        self,
        *,
        model,
        diffusion,
        data,
        batch_size,
        microbatch,
        lr,
        ema_rate,
        log_interval,
        save_interval,
        resume_checkpoint,
        use_fp16=False,
        fp16_scale_growth=1e-3,
        schedule_sampler=None,
        weight_decay=0.0,
        lr_anneal_steps=0,
        use_amp=False,
        model_name='ddpm',
        **kwargs
    ):

        self.kwargs = kwargs
        self.pool_512 = th.nn.AdaptiveAvgPool2d((512, 512))
        self.pool_256 = th.nn.AdaptiveAvgPool2d((256, 256))
        self.pool_128 = th.nn.AdaptiveAvgPool2d((128, 128))
        self.pool_64 = th.nn.AdaptiveAvgPool2d((64, 64))

        self.use_amp = use_amp
        self.model_name = model_name
        self.model = model
        self.diffusion = diffusion
        self.data = data
        self.batch_size = batch_size
        self.microbatch = microbatch if microbatch > 0 else batch_size
        self.lr = lr
        self.ema_rate = ([ema_rate] if isinstance(ema_rate, float) else
                         [float(x) for x in ema_rate.split(",")])
        self.log_interval = log_interval
        self.save_interval = save_interval
        self.resume_checkpoint = resume_checkpoint
        self.use_fp16 = use_fp16
        self.fp16_scale_growth = fp16_scale_growth
        self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
        self.weight_decay = weight_decay
        self.lr_anneal_steps = lr_anneal_steps

        self.step = 0
        self.resume_step = 0
        self.global_batch = self.batch_size * dist.get_world_size()

        self.sync_cuda = th.cuda.is_available()
        self._setup_model()
        self._load_model()
        self._setup_opt()
    
    def _load_model(self):
        self._load_and_sync_parameters()
    
    def _setup_opt(self):
        self.opt = AdamW(self.mp_trainer.master_params,
                         lr=self.lr,
                         weight_decay=self.weight_decay)
    
    def _setup_model(self):

        self.mp_trainer = MixedPrecisionTrainer(
            model=self.model,
            use_fp16=self.use_fp16,
            fp16_scale_growth=self.fp16_scale_growth,
            use_amp=self.use_amp,
            model_name=self.model_name
        )

        if self.resume_step:
            self._load_optimizer_state()
            # Model was resumed, either due to a restart or a checkpoint
            # being specified at the command line.
            self.ema_params = [
                self._load_ema_parameters(rate) for rate in self.ema_rate
            ]
        else:
            self.ema_params = [
                copy.deepcopy(self.mp_trainer.master_params)
                for _ in range(len(self.ema_rate))
            ]
            
        # for compatability

        # print('creating DDP')
        if th.cuda.is_available():
            self.use_ddp = True
            self.ddpm_model = self.model
            self.ddp_model = DDP(
                self.model,
                device_ids=[dist_util.dev()],
                output_device=dist_util.dev(),
                broadcast_buffers=False,
                bucket_cap_mb=128,
                find_unused_parameters=False,
            )
        else:
            if dist.get_world_size() > 1:
                logger.warn("Distributed training requires CUDA. "
                            "Gradients will not be synchronized properly!")
            self.use_ddp = False
            self.ddp_model = self.model
        # print('creating DDP done')


    def _load_and_sync_parameters(self):
        resume_checkpoint, resume_step = find_resume_checkpoint(
        ) or self.resume_checkpoint

        if resume_checkpoint:
            if not Path(resume_checkpoint).exists():
                logger.log(
                    f"failed to load model from checkpoint: {resume_checkpoint}, not exist"
                )
                return

            # self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
            self.resume_step = resume_step  # TODO, EMA part
            if dist.get_rank() == 0:
                logger.log(
                    f"loading model from checkpoint: {resume_checkpoint}...")
                # if model is None:
                #     model = self.model
                self.model.load_state_dict(
                    dist_util.load_state_dict(
                        resume_checkpoint,
                        map_location=dist_util.dev(),
                    ))

        # ! debugging, remove to check which key fails.
        dist_util.sync_params(self.model.parameters())
        # dist_util.sync_params(self.model.named_parameters())

    def _load_ema_parameters(self,
                             rate,
                             model=None,
                             mp_trainer=None,
                             model_name='ddpm'):

        if mp_trainer is None:
            mp_trainer = self.mp_trainer
        if model is None:
            model = self.model

        ema_params = copy.deepcopy(mp_trainer.master_params)

        main_checkpoint, _ = find_resume_checkpoint(
            self.resume_checkpoint, model_name) or self.resume_checkpoint
        ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step,
                                             rate, model_name)
        if ema_checkpoint:

            if dist_util.get_rank() == 0:

                if not Path(ema_checkpoint).exists():
                    logger.log(
                        f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist"
                    )
                    return

                logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")

                map_location = {
                    'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
                }  # configure map_location properly

                state_dict = dist_util.load_state_dict(
                    ema_checkpoint, map_location=map_location)

                model_ema_state_dict = model.state_dict()

                for k, v in state_dict.items():
                    if k in model_ema_state_dict.keys() and v.size(
                    ) == model_ema_state_dict[k].size():
                        model_ema_state_dict[k] = v

                    # elif 'IN' in k and model_name == 'rec' and getattr(model.decoder, 'decomposed_IN', False):
                    #     model_ema_state_dict[k.replace('IN', 'superresolution.norm.norm_layer')] = v # decomposed IN

                    else:
                        print('ignore key: ', k, ": ", v.size())

                ema_params = mp_trainer.state_dict_to_master_params(
                    model_ema_state_dict)

                del state_dict

        # print('ema mark 3, ', model_name, flush=True)
        if dist_util.get_world_size() > 1:
            dist_util.sync_params(ema_params)
        # print('ema mark 4, ', model_name, flush=True)
        # del ema_params
        return ema_params

    def _load_ema_parameters_freezeAE(
            self,
            rate,
            model,
            #  mp_trainer=None,
            model_name='rec'):

        # if mp_trainer is None:
        # mp_trainer = self.mp_trainer
        # if model is None:
        # model = self.model_rec

        # ema_params = copy.deepcopy(mp_trainer.master_params)

        main_checkpoint, _ = find_resume_checkpoint(
            self.resume_checkpoint, model_name) or self.resume_checkpoint
        ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step,
                                             rate, model_name)
        if ema_checkpoint:

            if dist_util.get_rank() == 0:

                if not Path(ema_checkpoint).exists():
                    logger.log(
                        f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist"
                    )
                    return

                logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")

                map_location = {
                    'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
                }  # configure map_location properly

                state_dict = dist_util.load_state_dict(
                    ema_checkpoint, map_location=map_location)

                model_ema_state_dict = model.state_dict()

                for k, v in state_dict.items():
                    if k in model_ema_state_dict.keys() and v.size(
                    ) == model_ema_state_dict[k].size():
                        model_ema_state_dict[k] = v
                    else:
                        print('ignore key: ', k, ": ", v.size())

                ema_params = mp_trainer.state_dict_to_master_params(
                    model_ema_state_dict)

                del state_dict

        # print('ema mark 3, ', model_name, flush=True)
        if dist_util.get_world_size() > 1:
            dist_util.sync_params(ema_params)
        # print('ema mark 4, ', model_name, flush=True)
        # del ema_params
        return ema_params

    # def _load_ema_parameters(self, rate):
    #     ema_params = copy.deepcopy(self.mp_trainer.master_params)

    #     main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint
    #     ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
    #     if ema_checkpoint:
    #         if dist.get_rank() == 0:
    #             logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
    #             state_dict = dist_util.load_state_dict(
    #                 ema_checkpoint, map_location=dist_util.dev()
    #             )
    #             ema_params = self.mp_trainer.state_dict_to_master_params(state_dict)

    #     dist_util.sync_params(ema_params)
    #     return ema_params

    def _load_optimizer_state(self):
        main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint
        opt_checkpoint = bf.join(bf.dirname(main_checkpoint),
                                 f"opt{self.resume_step:06}.pt")
        if bf.exists(opt_checkpoint):
            logger.log(
                f"loading optimizer state from checkpoint: {opt_checkpoint}")
            state_dict = dist_util.load_state_dict(
                opt_checkpoint, map_location=dist_util.dev())
            self.opt.load_state_dict(state_dict)

    def run_loop(self):
        while (not self.lr_anneal_steps
               or self.step + self.resume_step < self.lr_anneal_steps):
            batch, cond = next(self.data)
            self.run_step(batch, cond)
            if self.step % self.log_interval == 0:
                logger.dumpkvs()
            if self.step % self.save_interval == 0:
                self.save()
                # Run for a finite amount of time in integration tests.
                if os.environ.get("DIFFUSION_TRAINING_TEST",
                                  "") and self.step > 0:
                    return
            self.step += 1
        # Save the last checkpoint if it wasn't already saved.
        if (self.step - 1) % self.save_interval != 0:
            self.save()

    def run_step(self, batch, cond):
        self.forward_backward(batch, cond)
        took_step = self.mp_trainer.optimize(self.opt)
        if took_step:
            self._update_ema()
        self._anneal_lr()
        self.log_step()

    def forward_backward(self, batch, cond):
        self.mp_trainer.zero_grad()
        for i in range(0, batch.shape[0], self.microbatch):

            # st()
            with th.autocast(device_type=dist_util.dev(),
                             dtype=th.float16,
                             enabled=self.mp_trainer.use_amp):

                micro = batch[i:i + self.microbatch].to(dist_util.dev())
                micro_cond = {
                    k: v[i:i + self.microbatch].to(dist_util.dev())
                    for k, v in cond.items()
                }
                last_batch = (i + self.microbatch) >= batch.shape[0]
                t, weights = self.schedule_sampler.sample(
                    micro.shape[0], dist_util.dev())

                compute_losses = functools.partial(
                    self.diffusion.training_losses,
                    self.ddp_model,
                    micro,
                    t,
                    model_kwargs=micro_cond,
                )

                if last_batch or not self.use_ddp:
                    losses = compute_losses()
                else:
                    with self.ddp_model.no_sync():
                        losses = compute_losses()

                if isinstance(self.schedule_sampler, LossAwareSampler):
                    self.schedule_sampler.update_with_local_losses(
                        t, losses["loss"].detach())

                loss = (losses["loss"] * weights).mean()
                log_loss_dict(self.diffusion, t,
                              {k: v * weights
                               for k, v in losses.items()})

            self.mp_trainer.backward(loss)

    def _update_ema(self):
        for rate, params in zip(self.ema_rate, self.ema_params):
            update_ema(params, self.mp_trainer.master_params, rate=rate)

    def _anneal_lr(self):
        if not self.lr_anneal_steps:
            return
        frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
        lr = self.lr * (1 - frac_done)
        for param_group in self.opt.param_groups:
            param_group["lr"] = lr

    def log_step(self):
        logger.logkv("step", self.step + self.resume_step)
        logger.logkv("samples",
                     (self.step + self.resume_step + 1) * self.global_batch)

    def save(self):

        def save_checkpoint(rate, params):
            state_dict = self.mp_trainer.master_params_to_state_dict(params)
            if dist.get_rank() == 0:
                logger.log(f"saving model {rate}...")
                if not rate:
                    filename = f"model{(self.step+self.resume_step):07d}.pt"
                else:
                    filename = f"ema_{rate}_{(self.step+self.resume_step):07d}.pt"
                with bf.BlobFile(bf.join(get_blob_logdir(), filename),
                                 "wb") as f:
                    th.save(state_dict, f)

        save_checkpoint(0, self.mp_trainer.master_params)
        for rate, params in zip(self.ema_rate, self.ema_params):
            save_checkpoint(rate, params)

        if dist.get_rank() == 0:
            with bf.BlobFile(
                    bf.join(get_blob_logdir(),
                            f"opt{(self.step+self.resume_step):07d}.pt"),
                    "wb",
            ) as f:
                th.save(self.opt.state_dict(), f)

        dist.barrier()


def parse_resume_step_from_filename(filename):
    """
    Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
    checkpoint's number of steps.
    """
    # split1 = Path(filename).stem[-6:]
    split1 = Path(filename).stem[-7:]
    # split = filename.split("model")
    # if len(split) < 2:
    #     return 0
    # split1 = split[-1].split(".")[0]
    try:
        return int(split1)
    except ValueError:
        print('fail to load model step', split1)
        return 0


def get_blob_logdir():
    # You can change this to be a separate path to save checkpoints to
    # a blobstore or some external drive.
    return logger.get_dir()


def find_resume_checkpoint(resume_checkpoint='', model_name='ddpm'):
    # On your infrastructure, you may want to override this to automatically
    # discover the latest checkpoint on your blob storage, etc.

    if resume_checkpoint != '':
        step = parse_resume_step_from_filename(resume_checkpoint)
        split = resume_checkpoint.split("model")
        resume_ckpt_path = str(
            Path(split[0]) / f'model_{model_name}{step:07d}.pt')
    else:
        resume_ckpt_path = ''
        step = 0

    return resume_ckpt_path, step


def find_ema_checkpoint(main_checkpoint, step, rate, model_name=''):
    if main_checkpoint is None:
        return None
    if model_name == '':
        filename = f"ema_{rate}_{(step):07d}.pt"
    else:
        filename = f"ema_{model_name}_{rate}_{(step):07d}.pt"
    path = bf.join(bf.dirname(main_checkpoint), filename)
    # print(path)
    # st()
    if bf.exists(path):
        print('fine ema model', path)
        return path
    else:
        print('fail to find ema model', path)
    return None


def log_loss_dict(diffusion, ts, losses):
    for key, values in losses.items():
        logger.logkv_mean(key, values.mean().item())
        # Log the quantiles (four quartiles, in particular).
        for sub_t, sub_loss in zip(ts.cpu().numpy(),
                                   values.detach().cpu().numpy()):
            quartile = int(4 * sub_t / diffusion.num_timesteps)
            logger.logkv_mean(f"{key}_q{quartile}", sub_loss)


def log_rec3d_loss_dict(loss_dict):
    for key, values in loss_dict.items():
        try:
            logger.logkv_mean(key, values.mean().item())
        except:
            print('type error:', key)
    


def calc_average_loss(all_loss_dicts, verbose=True):
    all_scores = {}  # todo, defaultdict
    mean_all_scores = {}

    for loss_dict in all_loss_dicts:
        for k, v in loss_dict.items():
            v = v.item()
            if k not in all_scores:
                # all_scores[f'{k}_val'] = [v]
                all_scores[k] = [v]
            else:
                all_scores[k].append(v)

    for k, v in all_scores.items():
        mean = np.mean(v)
        std = np.std(v)
        if k in ['loss_lpis', 'loss_ssim']:
            mean = 1 - mean
        result_str = '{} average loss is {:.4f} +- {:.4f}'.format(k, mean, std)
        mean_all_scores[k] = mean
        if verbose:
            print(result_str)

    val_scores_for_logging = {
        f'{k}_val': v
        for k, v in mean_all_scores.items()
    }
    return val_scores_for_logging