LN3Diff / nsr /lsgm /train_util_diffusion_lsgm_noD_joint.py
NIRVANALAN
release file
87c126b
raw
history blame
57.4 kB
"""
Modified from:
https://github.com/NVlabs/LSGM/blob/main/training_obj_joint.py
"""
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm
from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
find_ema_checkpoint,
find_resume_checkpoint,
get_blob_logdir, log_loss_dict,
log_rec3d_loss_dict,
parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight
from ..train_util_diffusion import TrainLoop3DDiffusion, TrainLoopDiffusionWithRec
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# import utils as lsgm_utils
class JointDenoiseRecModel(th.nn.Module):
def __init__(self, ddpm_model, rec_model, diffusion_input_size) -> None:
super().__init__()
# del ddpm_model
# th.cuda.empty_cache()
# self.ddpm_model = th.nn.Identity()
self.ddpm_model = ddpm_model
self.rec_model = rec_model
self._setup_latent_stat(diffusion_input_size)
def _setup_latent_stat(self, diffusion_input_size): # for dynamic EMA tracking.
latent_size = (
1,
self.ddpm_model.in_channels, # type: ignore
diffusion_input_size,
diffusion_input_size),
self.ddpm_model.register_buffer(
'ema_latent_std',
th.ones(*latent_size).to(dist_util.dev()), persistent=True)
self.ddpm_model.register_buffer(
'ema_latent_mean',
th.zeros(*latent_size).to(dist_util.dev()), persistent=True)
# TODO, lint api.
def forward(
self,
*args,
model_name='ddpm',
**kwargs,
):
if model_name == 'ddpm':
return self.ddpm_model(*args, **kwargs)
elif model_name == 'rec':
return self.rec_model(*args, **kwargs)
else:
raise NotImplementedError(model_name)
# TODO, merge with train_util_diffusion.py later
class SDETrainLoopJoint(TrainLoopDiffusionWithRec):
"""A dataclass with some required attribtues; copied from guided_diffusion TrainLoop
"""
def __init__(
self,
rec_model,
denoise_model,
diffusion, # not used
sde_diffusion,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=0.001,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
triplane_scaling_divider=1,
use_amp=False,
diffusion_input_size=224,
**kwargs,
) -> None:
joint_model = JointDenoiseRecModel(denoise_model, rec_model, diffusion_input_size)
super().__init__(
model=joint_model,
diffusion=diffusion, # just for sampling
loss_class=loss_class,
data=data,
eval_data=eval_data,
eval_interval=eval_interval,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
use_amp=use_amp,
model_name='joint_denoise_rec_model',
iterations=iterations,
triplane_scaling_divider=triplane_scaling_divider,
diffusion_input_size=diffusion_input_size,
**kwargs)
self.sde_diffusion = sde_diffusion
# setup latent scaling factor
# ! integrate the init_params_group for rec model
def _setup_model(self):
super()._setup_model()
self.ddp_rec_model = functools.partial(self.model, model_name='rec')
self.ddp_ddpm_model = functools.partial(self.model, model_name='ddpm')
self.rec_model = self.ddp_model.module.rec_model
self.ddpm_model = self.ddp_model.module.ddpm_model # compatability
# TODO, required?
# for param in self.ddp_rec_model.module.decoder.triplane_decoder.parameters( # type: ignore
# ): # type: ignore
# param.requires_grad_(
# False
# ) # ! disable triplane_decoder grad in each iteration indepenently;
def _load_model(self):
# TODO, for currently compatability
if 'joint' in self.resume_checkpoint: # load joint directly
self._load_and_sync_parameters(model=self.model, model_name=self.model_name)
else: # from scratch
self._load_and_sync_parameters(model=self.rec_model, model_name='rec')
self._load_and_sync_parameters(model=self.ddpm_model,
model_name='ddpm')
def _setup_opt(self):
# TODO, two optims groups.
self.opt = AdamW([{
'name': 'ddpm',
'params': self.ddpm_model.parameters(),
}],
lr=self.lr,
weight_decay=self.weight_decay)
# for rec_param_group in self._init_optim_groups(self.rec_model):
# self.opt.add_param_group(rec_param_group)
print(self.opt)
class TrainLoop3DDiffusionLSGMJointnoD(SDETrainLoopJoint):
def __init__(self,
*,
rec_model,
denoise_model,
sde_diffusion,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
resume_cldm_checkpoint=None,
use_fp16=False,
fp16_scale_growth=0.001,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
triplane_scaling_divider=1,
use_amp=False,
diffusion_input_size=224,
diffusion_ce_anneal=False,
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
sde_diffusion=sde_diffusion,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
**kwargs)
sde_diffusion.args.batch_size = batch_size
self.latent_name = 'latent_normalized_2Ddiffusion' # normalized triplane latent
self.render_latent_behaviour = 'decode_after_vae' # directly render using triplane operations
self.diffusion_ce_anneal = diffusion_ce_anneal
# assert sde_diffusion.args.train_vae
def prepare_ddpm(self, eps, mode='p'):
log_rec3d_loss_dict({
f'eps_mean': eps.mean(),
f'eps_std': eps.std([1,2,3]).mean(0),
f'eps_max': eps.max()
})
args = self.sde_diffusion.args
# sample noise
noise = th.randn(size=eps.size(), device=eps.device
) # note that this noise value is currently shared!
# get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae)
if mode == 'p':
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \
self.sde_diffusion.iw_quantities(args.iw_sample_p, noise.shape[0]) # TODO, q not used, fall back to original ddpm implementation
else:
assert mode == 'q'
# assert args.iw_sample_q in ['ll_uniform', 'll_iw']
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \
self.sde_diffusion.iw_quantities(args.iw_sample_q, noise.shape[0]) # TODO, q not used, fall back to original ddpm implementation
eps_t_p = self.sde_diffusion.sample_q(eps, noise, var_t_p, m_t_p)
# ! important
# eps_t_p = eps_t_p.detach().requires_grad_(True)
# logsnr_p = self.sde_diffusion.log_snr(m_t_p,
# var_t_p) # for p only
logsnr_p = self.sde_diffusion.log_snr(m_t_p, var_t_p) # for p only
return {
'noise': noise,
't_p': t_p,
'eps_t_p': eps_t_p,
'logsnr_p': logsnr_p,
'obj_weight_t_p': obj_weight_t_p,
'var_t_p': var_t_p,
'm_t_p': m_t_p,
'eps': eps,
'mode': mode
}
# merged from noD.py
def ce_weight(self):
return self.loss_class.opt.ce_lambda
def apply_model(self, p_sample_batch, **model_kwargs):
args = self.sde_diffusion.args
# args = self.sde_diffusion.args
noise, eps_t_p, t_p, logsnr_p, obj_weight_t_p, var_t_p, m_t_p = (
p_sample_batch[k] for k in ('noise', 'eps_t_p', 't_p', 'logsnr_p',
'obj_weight_t_p', 'var_t_p', 'm_t_p'))
pred_eps_p, pred_x0_p = self.ddpm_step(eps_t_p, t_p, logsnr_p, var_t_p, m_t_p,
**model_kwargs)
# ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation"
with self.ddp_model.no_sync(): # type: ignore
if args.loss_type == 'eps':
l2_term_p = th.square(pred_eps_p - noise) # ? weights
elif args.loss_type == 'x0':
# l2_term_p = th.square(pred_eps_p - p_sample_batch['eps']) # ? weights
l2_term_p = th.square(
pred_x0_p - p_sample_batch['eps'].detach()) # ? weights
# if args.loss_weight == 'snr':
# obj_weight_t_p = th.sigmoid(th.exp(logsnr_p))
else:
raise NotImplementedError(args.loss_type)
# p_eps_objective = th.mean(obj_weight_t_p * l2_term_p)
p_eps_objective = obj_weight_t_p * l2_term_p
if p_sample_batch['mode'] == 'q':
ce_weight = self.ce_weight()
p_eps_objective = p_eps_objective * ce_weight
log_rec3d_loss_dict({
'ce_weight': ce_weight,
})
log_rec3d_loss_dict({
f"{p_sample_batch['mode']}_loss":
p_eps_objective.mean(),
'mixing_logit':
self.ddp_ddpm_model(x=None,
timesteps=None,
get_attr='mixing_logit').detach(),
})
return {
'pred_eps_p': pred_eps_p,
'eps_t_p': eps_t_p,
'p_eps_objective': p_eps_objective,
'pred_x0_p': pred_x0_p,
'logsnr_p': logsnr_p
}
def ddpm_step(self, eps_t, t, logsnr, var_t, m_t, **model_kwargs):
"""helper function for ddpm predictions; returns predicted eps, x0 and logsnr.
args notes:
eps_t is x_noisy
"""
args = self.sde_diffusion.args
pred_params = self.ddp_ddpm_model(x=eps_t, timesteps=t, **model_kwargs)
# logsnr = self.sde_diffusion.log_snr(m_t, var_t) # for p only
if args.pred_type in ['eps', 'v']:
if args.pred_type == 'v':
pred_eps = self.sde_diffusion._predict_eps_from_z_and_v(
pred_params, var_t, eps_t, m_t
)
# pred_x0 = self.sde_diffusion._predict_x0_from_z_and_v(
# pred_params, var_t, eps_t, m_t) # ! verified
else:
pred_eps = pred_params
# mixing normal trick
mixing_component = self.sde_diffusion.mixing_component(
eps_t, var_t, t, enabled=True) # z_t * sigma_t
pred_eps = get_mixed_prediction(
True, pred_eps,
self.ddp_ddpm_model(x=None,
timesteps=None,
get_attr='mixing_logit'), mixing_component)
pred_x0 = self.sde_diffusion._predict_x0_from_eps( eps_t, pred_eps, logsnr) # for VAE loss, denosied latent
# eps, pred_params, logsnr) # for VAE loss, denosied latent
elif args.pred_type == 'x0':
# ! pred_x0_mixed = alpha * pred_x0 + (1-alpha) * z_t * alpha_t
pred_x0 = pred_params # how to mix?
# mixing normal trick
mixing_component = self.sde_diffusion.mixing_component_x0(
eps_t, var_t, t, enabled=True) # z_t * alpha_t
pred_x0 = get_mixed_prediction(
True, pred_x0,
self.ddp_ddpm_model(x=None,
timesteps=None,
get_attr='mixing_logit'), mixing_component)
pred_eps = self.sde_diffusion._predict_eps_from_x0(
eps_t, pred_x0, logsnr)
else:
raise NotImplementedError(f'{args.pred_type} not implemented.')
log_rec3d_loss_dict({
f'pred_x0_mean': pred_x0.mean(),
f'pred_x0_std': pred_x0.std([1,2,3]).mean(0),
f'pred_x0_max': pred_x0.max(),
})
return pred_eps, pred_x0
def ddpm_loss(self, noise, pred_eps, last_batch):
# ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation"
if last_batch or not self.use_ddp:
l2_term = th.square(pred_eps - noise)
else:
with self.ddp_model.no_sync(): # type: ignore
l2_term = th.square(pred_eps - noise) # ? weights
return l2_term
def run_step(self, batch, step='diffusion_step_rec'):
if step == 'ce_ddpm_step':
self.ce_ddpm_step(batch)
elif step == 'p_rendering_step':
self.p_rendering_step(batch)
elif step == 'eps_step':
self.eps_step(batch)
# ! both took ddpm step
self._update_ema()
self._anneal_lr()
self.log_step()
@th.inference_mode()
def _post_run_loop(self):
# if self.step % self.eval_interval =r 0 and self.step != 0:
# if self.step % self.eval_interval == 0:
# if dist_util.get_rank() == 0:
# self.eval_ddpm_sample(
# self.rec_model,
# # self.ddpm_model
# ) # ! only support single GPU inference now.
# if self.sde_diffusion.args.train_vae:
# self.eval_loop(self.ddp_rec_model)
if self.step % self.log_interval == 0 and dist_util.get_rank() == 0:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
# if self.step % self.eval_interval == 0 and self.step != 0:
if self.step % self.eval_interval == 0:
if dist_util.get_rank() == 0:
self.eval_ddpm_sample(self.ddp_rec_model)
if self.sde_diffusion.args.train_vae:
self.eval_loop(self.ddp_rec_model)
if self.step % self.save_interval == 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
self.step += 1
if self.step > self.iterations:
print('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
exit()
def run_loop(self):
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
batch = next(self.data)
self.run_step(batch, step='ce_ddpm_step')
self._post_run_loop()
# batch = next(self.data)
# self.run_step(batch, step='p_rendering_step')
def ce_ddpm_step(self, batch, behaviour='rec', *args, **kwargs):
"""
add sds grad to all ae predicted x_0
"""
args = self.sde_diffusion.args
assert args.train_vae
requires_grad(self.rec_model, args.train_vae)
requires_grad(self.ddpm_model, True)
# TODO merge?
self.mp_trainer.zero_grad()
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k:
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in batch.items()
}
last_batch = (i + self.microbatch) >= batch_size
q_vae_recon_loss = th.tensor(0.0).to(dist_util.dev())
# vision_aided_loss = th.tensor(0.0).to(dist_util.dev())
# denoise_loss = th.tensor(0.0).to(dist_util.dev())
# =================================== ae part ===================================
with th.cuda.amp.autocast(dtype=th.float16,
enabled=self.mp_trainer.use_amp):
# ! part 1: train vae with CE; ddpm fixed
# ! TODO, add KL_all_list? vae.decompose
with th.set_grad_enabled(args.train_vae):
# vae_out = self.ddp_rec_model(
# img=micro['img_to_encoder'],
# c=micro['c'],
# behaviour='encoder_vae',
# ) # pred: (B, 3, 64, 64)
# TODO, no need to render if not SSD; no need to do ViT decoder if only the latent is needed. update later
# if args.train_vae:
# if args.add_rendering_loss:
# if args.joint_train:
# with th.set_grad_enabled(args.train_vae):
pred = self.ddp_rec_model(
# latent=vae_out,
img=micro['img_to_encoder'],
c=micro['c'],
)
# behaviour=self.render_latent_behaviour)
# vae reconstruction loss
if last_batch or not self.use_ddp:
q_vae_recon_loss, loss_dict = self.loss_class(
pred, micro, test_mode=False)
else:
with self.ddp_model.no_sync(): # type: ignore
q_vae_recon_loss, loss_dict = self.loss_class(
pred, micro, test_mode=False)
log_rec3d_loss_dict(loss_dict)
# '''
# ! calculate p/q loss;
# nelbo_loss = balanced_kl * self.loss_class.opt.ce_balanced_kl + q_vae_recon_loss
nelbo_loss = q_vae_recon_loss
q_loss = th.mean(nelbo_loss)
# st()
# all_log_q = [vae_out['log_q_2Ddiffusion']]
# eps = vae_out[self.latent_name]
# all_log_q = [pred['log_q_2Ddiffusion']]
eps = pred[self.latent_name]
if not args.train_vae:
eps.requires_grad_(True) # single stage diffusion
# sample noise
noise = th.randn(
size=eps.size(), device=eps.device
) # note that this noise value is currently shared!
# in case we want to train q (vae) with another batch using a different sampling scheme for times t
'''
assert args.iw_sample_q in ['ll_uniform', 'll_iw']
t_q, var_t_q, m_t_q, obj_weight_t_q, _, g2_t_q = \
self.sde_diffusion.iw_quantities(args.iw_sample_q)
eps_t_q = self.sde_diffusion.sample_q(eps, noise, var_t_q,
m_t_q)
# eps_t = th.cat([eps_t_p, eps_t_q], dim=0)
# var_t = th.cat([var_t_p, var_t_q], dim=0)
# t = th.cat([t_p, t_q], dim=0)
# noise = th.cat([noise, noise], dim=0)
# run the diffusion model
if not args.train_vae:
eps_t_q.requires_grad_(True) # 2*BS, 12, 16, 16
# ! For CE guidance.
requires_grad(self.ddpm_model_module, False)
pred_eps_q, _, _ = self.ddpm_step(eps_t_q, t_q, m_t_q, var_t_q)
l2_term_q = self.ddpm_loss(noise, pred_eps_q, last_batch)
# pred_eps = th.cat([pred_eps_p, pred_eps_q], dim=0) # p then q
# ÇE: nelbo loss with kl balancing
assert args.iw_sample_q in ['ll_uniform', 'll_iw']
# l2_term_p, l2_term_q = th.chunk(l2_term, chunks=2, dim=0)
cross_entropy_per_var = obj_weight_t_q * l2_term_q
cross_entropy_per_var += self.sde_diffusion.cross_entropy_const(
args.sde_time_eps)
all_neg_log_p = [cross_entropy_per_var
] # since only one vae group
kl_all_list, kl_vals_per_group, kl_diag_list = kl_per_group_vada(
all_log_q, all_neg_log_p) # return the mean of two terms
# nelbo loss with kl balancing
balanced_kl, kl_coeffs, kl_vals = kl_balancer(kl_all_list,
kl_coeff=1.0,
kl_balance=False,
alpha_i=None)
# st()
log_rec3d_loss_dict(
dict(
balanced_kl=balanced_kl,
l2_term_q=l2_term_q,
cross_entropy_per_var=cross_entropy_per_var.mean(),
all_log_q=all_log_q[0].mean(),
))
'''
# ! update vae for CE
# ! single stage diffusion for rec side 1: bind vae prior and diffusion prior
# ! BP for CE and VAE; quit the AMP context.
# if args.train_vae:
# self.mp_trainer.backward(q_loss)
# _ = self.mp_trainer.optimize(self.opt)
# retain_graph=different_p_q_objectives(
# args.iw_sample_p,
# args.iw_sample_q))
log_rec3d_loss_dict(
dict(q_vae_recon_loss=q_vae_recon_loss,
# all_log_q=all_log_q[0].mean(),
))
# ! adding p loss; enable ddpm gradient
# self.mp_trainer.zero_grad()
# requires_grad(self.rec_model_module,
# False) # could be removed since eps_t_p.detach()
with th.cuda.amp.autocast(dtype=th.float16,
enabled=self.mp_trainer.use_amp):
# first get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae)
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \
self.sde_diffusion.iw_quantities(args.iw_sample_p)
eps_t_p = self.sde_diffusion.sample_q(eps, noise, var_t_p,
m_t_p)
eps_t_p = eps_t_p.detach(
) # .requires_grad_(True) # ! update ddpm not rec module
pred_eps_p, _, = self.ddpm_step(eps_t_p, t_p, m_t_p, var_t_p)
l2_term_p = self.ddpm_loss(noise, pred_eps_p, last_batch)
p_loss = th.mean(obj_weight_t_p * l2_term_p)
# ! update ddpm
self.mp_trainer.backward(p_loss +
q_loss) # just backward for p_loss
_ = self.mp_trainer.optimize(self.opt)
# requires_grad(self.rec_model_module, True)
log_rec3d_loss_dict(
dict(
p_loss=p_loss,
mixing_logit=self.ddp_ddpm_model(
x=None, timesteps=None,
get_attr='mixing_logit').detach(),
))
# TODO, merge visualization with original AE
# =================================== denoised AE log part ===================================
# ! todo, wrap in a single function
if dist_util.get_rank() == 0 and self.step % 500 == 0:
with th.no_grad():
if not args.train_vae:
vae_out.pop('posterior') # for calculating kl loss
vae_out_for_pred = {
k:
v[0:1].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in vae_out.items()
}
pred = self.ddp_rec_model(
latent=vae_out_for_pred,
c=micro['c'][0:1],
behaviour=self.render_latent_behaviour)
assert isinstance(pred, dict)
assert pred is not None
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
if 'image_depth' in pred:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
else:
pred_depth = th.zeros_like(gt_depth)
pred_img = pred['image_raw']
gt_img = micro['img']
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_img = th.cat(
[self.pool_512(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
elif pred['image_sr'].shape[-1] == 256:
pred_img = th.cat(
[self.pool_256(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_256(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_256(pred_depth)
gt_depth = self.pool_256(gt_depth)
else:
pred_img = th.cat(
[self.pool_128(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_128(micro['img']), micro['img_sr']],
dim=-1)
gt_depth = self.pool_128(gt_depth)
pred_depth = self.pool_128(pred_depth)
else:
gt_img = self.pool_64(gt_img)
gt_depth = self.pool_64(gt_depth)
gt_vis = th.cat(
[
gt_img,
# micro['img'],
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
pred_vis = th.cat([
pred_img[0:1], pred_depth[0:1].repeat_interleave(3,
dim=1)
],
dim=-1) # B, 3, H, W
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
1, 2, 0).cpu() # ! pred in range[-1, 1]
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
Image.fromarray(vis).save(
# f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}_{behaviour}.jpg'
f'{logger.get_dir()}/{self.step+self.resume_step}_{behaviour}.jpg'
)
print(
'log denoised vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}_{behaviour}.jpg'
)
th.cuda.empty_cache()
def eps_step(self, batch, behaviour='rec', *args, **kwargs):
"""
add sds grad to all ae predicted x_0
"""
args = self.sde_diffusion.args
requires_grad(self.ddpm_model_module, True)
requires_grad(self.rec_model_module, False)
# TODO?
# if args.train_vae:
# for param in self.ddp_rec_model.module.decoder.triplane_decoder.parameters( # type: ignore
# ): # type: ignore
# param.requires_grad_(
# False
# ) # ! disable triplane_decoder grad in each iteration indepenently;
self.mp_trainer.zero_grad()
# assert args.train_vae
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k:
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in batch.items()
}
last_batch = (i + self.microbatch) >= batch_size
# =================================== ae part ===================================
with th.cuda.amp.autocast(dtype=th.float16,
enabled=self.mp_trainer.use_amp):
# and args.train_vae):
# ! part 1: train vae with CE; ddpm fixed
# ! TODO, add KL_all_list? vae.decompose
with th.set_grad_enabled(args.train_vae):
vae_out = self.ddp_rec_model(
img=micro['img_to_encoder'],
c=micro['c'],
behaviour='encoder_vae',
) # pred: (B, 3, 64, 64)
eps = vae_out[self.latent_name]
# sample noise
noise = th.randn(
size=eps.size(), device=eps.device
) # note that this noise value is currently shared!
# get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae)
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \
self.sde_diffusion.iw_quantities(args.iw_sample_p)
eps_t_p = self.sde_diffusion.sample_q(eps, noise, var_t_p,
m_t_p)
logsnr_p = self.sde_diffusion.log_snr(m_t_p,
var_t_p) # for p only
pred_eps_p, pred_x0_p, logsnr_p = self.ddpm_step(
eps_t_p, t_p, m_t_p, var_t_p)
# ! batchify for mixing_component
# mixing normal trick
mixing_component = self.sde_diffusion.mixing_component(
eps_t_p, var_t_p, t_p,
enabled=True) # TODO, which should I use?
pred_eps_p = get_mixed_prediction(
True, pred_eps_p,
self.ddp_ddpm_model(x=None,
timesteps=None,
get_attr='mixing_logit'),
mixing_component)
# ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation"
if last_batch or not self.use_ddp:
l2_term_p = th.square(pred_eps_p - noise)
else:
with self.ddp_ddpm_model.no_sync(): # type: ignore
l2_term_p = th.square(pred_eps_p - noise) # ? weights
p_eps_objective = th.mean(
obj_weight_t_p *
l2_term_p) * self.loss_class.opt.p_eps_lambda
log_rec3d_loss_dict(
dict(mixing_logit=self.ddp_ddpm_model(
x=None, timesteps=None,
get_attr='mixing_logit').detach(), ))
# =====================================================================
# ! single stage diffusion for rec side 2: generative feature
# if args.p_rendering_loss:
# target = micro
# pred = self.ddp_rec_model(
# # latent=vae_out,
# latent={
# **vae_out, self.latent_name: pred_x0_p,
# 'latent_name': self.latent_name
# },
# c=micro['c'],
# behaviour=self.render_latent_behaviour)
# # vae reconstruction loss
# if last_batch or not self.use_ddp:
# p_vae_recon_loss, _ = self.loss_class(pred,
# target,
# test_mode=False)
# else:
# with self.ddp_model.no_sync(): # type: ignore
# p_vae_recon_loss, _ = self.loss_class(
# pred, target, test_mode=False)
# log_rec3d_loss_dict(
# dict(p_vae_recon_loss=p_vae_recon_loss, ))
# p_loss = p_eps_objective + p_vae_recon_loss
# else:
p_loss = p_eps_objective
log_rec3d_loss_dict(
dict(p_loss=p_loss, p_eps_objective=p_eps_objective))
# ! to arrange: update vae params
self.mp_trainer.backward(p_loss)
# update ddpm accordingly
_ = self.mp_trainer.optimize(
self.opt) # TODO, update two groups of parameters
# TODO, merge visualization with original AE
# ! todo, merge required
# =================================== denoised AE log part ===================================
if dist_util.get_rank(
) == 0 and self.step % 500 == 0 and behaviour != 'diff':
with th.no_grad():
vae_out.pop('posterior') # for calculating kl loss
vae_out_for_pred = {
k:
v[0:1].to(dist_util.dev())
if isinstance(v, th.Tensor) else v
for k, v in vae_out.items()
}
pred = self.ddp_rec_model(
latent=vae_out_for_pred,
c=micro['c'][0:1],
behaviour=self.render_latent_behaviour)
assert isinstance(pred, dict)
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
if 'image_depth' in pred:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
else:
pred_depth = th.zeros_like(gt_depth)
pred_img = pred['image_raw']
gt_img = micro['img']
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_img = th.cat(
[self.pool_512(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
elif pred['image_sr'].shape[-1] == 256:
pred_img = th.cat(
[self.pool_256(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_256(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_256(pred_depth)
gt_depth = self.pool_256(gt_depth)
else:
pred_img = th.cat(
[self.pool_128(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_128(micro['img']), micro['img_sr']],
dim=-1)
gt_depth = self.pool_128(gt_depth)
pred_depth = self.pool_128(pred_depth)
else:
gt_img = self.pool_64(gt_img)
gt_depth = self.pool_64(gt_depth)
gt_vis = th.cat(
[
gt_img, micro['img'], micro['img'],
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L
noised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=eps_t_p[0:1] * self.
triplane_scaling_divider, # TODO, how to define the scale automatically
behaviour=self.render_latent_behaviour)
pred_x0 = self.sde_diffusion._predict_x0_from_eps(
eps_t_p, pred_eps_p,
logsnr_p) # for VAE loss, denosied latent
# pred_xstart_3D
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=pred_x0[0:1] * self.
triplane_scaling_divider, # TODO, how to define the scale automatically?
behaviour=self.render_latent_behaviour)
pred_vis = th.cat([
pred_img[0:1], noised_ae_pred['image_raw'][0:1],
denoised_ae_pred['image_raw'][0:1],
pred_depth[0:1].repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
1, 2, 0).cpu() # ! pred in range[-1, 1]
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}_{behaviour}.jpg'
)
print(
'log denoised vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}_{behaviour}.jpg'
)
del vis, pred_vis, pred_x0, pred_eps_p, micro, vae_out
th.cuda.empty_cache()
def p_rendering_step(self, batch, behaviour='rec', *args, **kwargs):
"""
add sds grad to all ae predicted x_0
"""
args = self.sde_diffusion.args
requires_grad(self.ddpm_model, True)
requires_grad(self.rec_model, args.train_vae)
# TODO?
# if args.train_vae:
# for param in self.ddp_rec_model.module.decoder.triplane_decoder.parameters( # type: ignore
# ): # type: ignore
# param.requires_grad_(
# False
# ) # ! disable triplane_decoder grad in each iteration indepenently;
self.mp_trainer.zero_grad()
assert args.train_vae
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k:
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in batch.items()
}
last_batch = (i + self.microbatch) >= batch_size
# =================================== ae part ===================================
with th.cuda.amp.autocast(dtype=th.float16,
enabled=self.mp_trainer.use_amp):
# and args.train_vae):
# ! part 1: train vae with CE; ddpm fixed
# ! TODO, add KL_all_list? vae.decompose
with th.set_grad_enabled(args.train_vae):
vae_out = self.ddp_rec_model(
img=micro['img_to_encoder'],
c=micro['c'],
behaviour='encoder_vae',
) # pred: (B, 3, 64, 64)
eps = vae_out[self.latent_name]
# sample noise
noise = th.randn(
size=eps.size(), device=eps.device
) # note that this noise value is currently shared!
# get diffusion quantities for p (sgm prior) sampling scheme and reweighting for q (vae)
t_p, var_t_p, m_t_p, obj_weight_t_p, obj_weight_t_q, g2_t_p = \
self.sde_diffusion.iw_quantities(args.iw_sample_p)
eps_t_p = self.sde_diffusion.sample_q(eps, noise, var_t_p,
m_t_p)
logsnr_p = self.sde_diffusion.log_snr(m_t_p,
var_t_p) # for p only
# pred_eps_p, pred_x0_p, logsnr_p = self.ddpm_step(
pred_eps_p, pred_x0_p = self.ddpm_step(eps_t_p, t_p, logsnr_p,
var_t_p)
# eps_t_p, t_p, m_t_p, var_t_p)
# ! batchify for mixing_component
# mixing normal trick
# mixing_component = self.sde_diffusion.mixing_component(
# eps_t_p, var_t_p, t_p,
# enabled=True) # TODO, which should I use?
# pred_eps_p = get_mixed_prediction(
# True, pred_eps_p,
# self.ddp_ddpm_model(x=None,
# timesteps=None,
# get_attr='mixing_logit'),
# mixing_component)
# ! eps loss equivalent to snr weighting of x0 loss, see "progressive distillation"
if last_batch or not self.use_ddp:
l2_term_p = th.square(pred_eps_p - noise)
else:
with self.ddp_model.no_sync(): # type: ignore
l2_term_p = th.square(pred_eps_p - noise) # ? weights
p_eps_objective = th.mean(obj_weight_t_p * l2_term_p)
# st()
log_rec3d_loss_dict(
dict(mixing_logit=self.ddp_ddpm_model(
x=None, timesteps=None,
get_attr='mixing_logit').detach(), ))
# =====================================================================
# ! single stage diffusion for rec side 2: generative feature
if args.p_rendering_loss:
target = micro
pred = self.ddp_rec_model( # re-render
latent={
**vae_out, self.latent_name: pred_x0_p,
'latent_name': self.latent_name
},
c=micro['c'],
behaviour=self.render_latent_behaviour)
# vae reconstruction loss
if last_batch or not self.use_ddp:
pred[self.latent_name] = vae_out[self.latent_name]
pred[
'latent_name'] = self.latent_name # just for stats
p_vae_recon_loss, rec_loss_dict = self.loss_class(
pred, target, test_mode=False)
else:
with self.ddp_model.no_sync(): # type: ignore
p_vae_recon_loss, rec_loss_dict = self.loss_class(
pred, target, test_mode=False)
log_rec3d_loss_dict(
dict(p_vae_recon_loss=p_vae_recon_loss, ))
for key in rec_loss_dict.keys():
if 'latent' in key:
log_rec3d_loss_dict({key: rec_loss_dict[key]})
p_loss = p_eps_objective + p_vae_recon_loss
else:
p_loss = p_eps_objective
log_rec3d_loss_dict(
dict(p_loss=p_loss, p_eps_objective=p_eps_objective))
# ! to arrange: update vae params
self.mp_trainer.backward(p_loss)
# update ddpm accordingly
_ = self.mp_trainer.optimize(
self.opt) # TODO, update two groups of parameters
# TODO, merge visualization with original AE
# ! todo, merge required
# =================================== denoised AE log part ===================================
if dist_util.get_rank(
) == 0 and self.step % 500 == 0 and behaviour != 'diff':
with th.no_grad():
vae_out.pop('posterior') # for calculating kl loss
vae_out_for_pred = {
k:
v[0:1].to(dist_util.dev())
if isinstance(v, th.Tensor) else v
for k, v in vae_out.items()
}
pred = self.ddp_rec_model(
latent=vae_out_for_pred,
c=micro['c'][0:1],
behaviour=self.render_latent_behaviour)
assert isinstance(pred, dict)
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
if 'image_depth' in pred:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
else:
pred_depth = th.zeros_like(gt_depth)
pred_img = pred['image_raw']
gt_img = micro['img']
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_img = th.cat(
[self.pool_512(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
elif pred['image_sr'].shape[-1] == 256:
pred_img = th.cat(
[self.pool_256(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_256(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_256(pred_depth)
gt_depth = self.pool_256(gt_depth)
else:
pred_img = th.cat(
[self.pool_128(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_128(micro['img']), micro['img_sr']],
dim=-1)
gt_depth = self.pool_128(gt_depth)
pred_depth = self.pool_128(pred_depth)
else:
gt_img = self.pool_64(gt_img)
gt_depth = self.pool_64(gt_depth)
gt_vis = th.cat(
[
gt_img, micro['img'], micro['img'],
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L
noised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=eps_t_p[0:1] * self.
triplane_scaling_divider, # TODO, how to define the scale automatically
behaviour=self.render_latent_behaviour)
pred_x0 = self.sde_diffusion._predict_x0_from_eps(
eps_t_p, pred_eps_p,
logsnr_p) # for VAE loss, denosied latent
# pred_xstart_3D
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=pred_x0[0:1] * self.
triplane_scaling_divider, # TODO, how to define the scale automatically?
behaviour=self.render_latent_behaviour)
pred_vis = th.cat([
pred_img[0:1], noised_ae_pred['image_raw'][0:1],
denoised_ae_pred['image_raw'][0:1],
pred_depth[0:1].repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
1, 2, 0).cpu() # ! pred in range[-1, 1]
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}_{behaviour}.jpg'
)
print(
'log denoised vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}_{behaviour}.jpg'
)
del vis, pred_vis, pred_x0, pred_eps_p, micro, vae_out
th.cuda.empty_cache()
class TrainLoop3DDiffusionLSGMJointnoD_ponly(TrainLoop3DDiffusionLSGMJointnoD):
def __init__(self,
*,
rec_model,
denoise_model,
sde_diffusion,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=0.001,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
triplane_scaling_divider=1,
use_amp=False,
diffusion_input_size=224,
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
sde_diffusion=sde_diffusion,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
**kwargs)
def run_loop(self):
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
self._post_run_loop()
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# batch = next(self.data)
# self.run_step(batch, step='ce_ddpm_step')
batch = next(self.data)
self.run_step(batch, step='p_rendering_step')
# self.run_step(batch, step='eps_step')