NIRVANALAN
release file
87c126b
raw
history blame
27 kB
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""
import math
import torch
import torch.nn as nn
import numpy as np
from .ray_marcher import MipRayMarcher2
from . import math_utils
from pdb import set_trace as st
from .ray_sampler import depth2pts_outside, HUGE_NUMBER, TINY_NUMBER
def generate_planes():
"""
Defines planes by the three vectors that form the "axes" of the
plane. Should work with arbitrary number of planes and planes of
arbitrary orientation.
"""
return torch.tensor(
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[1, 0, 0], [0, 0, 1], [0, 1, 0]],
[[0, 0, 1], [1, 0, 0], [0, 1, 0]]],
dtype=torch.float32)
# def project_onto_planes(planes, coordinates):
# """
# Does a projection of a 3D point onto a batch of 2D planes,
# returning 2D plane coordinates.
# Takes plane axes of shape n_planes, 3, 3
# # Takes coordinates of shape N, M, 3
# # returns projections of shape N*n_planes, M, 2
# """
# N, M, C = coordinates.shape
# n_planes, _, _ = planes.shape
# coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
# inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
# projections = torch.bmm(coordinates, inv_planes)
# return projections[..., :2]
def project_onto_planes(planes, coordinates):
"""
Does a projection of a 3D point onto a batch of 2D planes,
returning 2D plane coordinates.
Takes plane axes of shape n_planes, 3, 3
# Takes coordinates of shape N, M, 3
# returns projections of shape N*n_planes, M, 2
"""
# # ORIGINAL
# N, M, C = coordinates.shape
# xy_coords = coordinates[..., [0, 1]]
# xz_coords = coordinates[..., [0, 2]]
# zx_coords = coordinates[..., [2, 0]]
# return torch.stack([xy_coords, xz_coords, zx_coords], dim=1).reshape(N*3, M, 2)
# FIXED
N, M, _ = coordinates.shape
xy_coords = coordinates[..., [0, 1]]
yz_coords = coordinates[..., [1, 2]]
zx_coords = coordinates[..., [2, 0]]
return torch.stack([xy_coords, yz_coords, zx_coords],
dim=1).reshape(N * 3, M, 2)
def sample_from_planes(plane_axes,
plane_features,
coordinates,
mode='bilinear',
padding_mode='zeros',
box_warp=None):
assert padding_mode == 'zeros'
N, n_planes, C, H, W = plane_features.shape
_, M, _ = coordinates.shape
# st()
plane_features = plane_features.view(N * n_planes, C, H, W)
# plane_features = plane_features.reshape(N * n_planes, C, H, W)
coordinates = (2 / box_warp) * coordinates # TODO: add specific box bounds
projected_coordinates = project_onto_planes(plane_axes,
coordinates).unsqueeze(1)
output_features = torch.nn.functional.grid_sample(
plane_features,
projected_coordinates.float(),
mode=mode,
padding_mode=padding_mode,
align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
return output_features
def sample_from_3dgrid(grid, coordinates):
"""
Expects coordinates in shape (batch_size, num_points_per_batch, 3)
Expects grid in shape (1, channels, H, W, D)
(Also works if grid has batch size)
Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels)
"""
batch_size, n_coords, n_dims = coordinates.shape
sampled_features = torch.nn.functional.grid_sample(
grid.expand(batch_size, -1, -1, -1, -1),
coordinates.reshape(batch_size, 1, 1, -1, n_dims),
mode='bilinear',
padding_mode='zeros',
align_corners=False)
N, C, H, W, D = sampled_features.shape
sampled_features = sampled_features.permute(0, 4, 3, 2,
1).reshape(N, H * W * D, C)
return sampled_features
class ImportanceRenderer(torch.nn.Module):
def __init__(self):
super().__init__()
self.ray_marcher = MipRayMarcher2()
self.plane_axes = generate_planes()
def forward(self,
planes,
decoder,
ray_origins,
ray_directions,
rendering_options,
return_meta=False):
# return_sampling_details_flag=False):
self.plane_axes = self.plane_axes.to(ray_origins.device)
# if rendering_options.get('return_sampling_details_flag', None) is not None:
shape_synthesized = {}
if rendering_options['ray_start'] == rendering_options[
'ray_end'] == 'auto':
ray_start, ray_end = math_utils.get_ray_limits_box(
ray_origins,
ray_directions,
box_side_length=rendering_options['box_warp'])
is_ray_valid = ray_end > ray_start
# st()
if torch.any(is_ray_valid).item():
ray_start[~is_ray_valid] = ray_start[is_ray_valid].min()
ray_end[~is_ray_valid] = ray_start[is_ray_valid].max()
depths_coarse = self.sample_stratified(
ray_origins, ray_start, ray_end,
rendering_options['depth_resolution'],
rendering_options['disparity_space_sampling'])
else:
# Create stratified depth samples
depths_coarse = self.sample_stratified(
ray_origins, rendering_options['ray_start'],
rendering_options['ray_end'],
rendering_options['depth_resolution'],
rendering_options['disparity_space_sampling'])
batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape
# Coarse Pass
sample_coordinates = (
ray_origins.unsqueeze(-2) +
depths_coarse * ray_directions.unsqueeze(-2)).reshape(
batch_size, -1, 3)
# st() # np.save('sample_coordinates.npy', sample_coordinates.detach().cpu().numpy())
sample_directions = ray_directions.unsqueeze(-2).expand(
-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
colors_coarse, densities_coarse = self.run_model(
planes, decoder, sample_coordinates, sample_directions,
rendering_options, batch_size, num_rays, samples_per_ray)
colors_coarse = colors_coarse.reshape(batch_size, num_rays,
samples_per_ray,
colors_coarse.shape[-1])
densities_coarse = densities_coarse.reshape(batch_size, num_rays,
samples_per_ray, 1)
if rendering_options.get('return_sampling_details_flag', False):
shape_synthesized.update({
# 'coarse_coords': sample_coordinates.detach().clone(),
# 'coarse_densities': densities_coarse.detach()
'coarse_coords':
sample_coordinates.reshape(batch_size, num_rays,
samples_per_ray, 3),
'coarse_densities':
densities_coarse
})
# Fine Pass
N_importance = rendering_options['depth_resolution_importance']
if N_importance > 0:
_, _, _, weights = self.ray_marcher(colors_coarse,
densities_coarse,
depths_coarse,
rendering_options)
depths_fine = self.sample_importance(depths_coarse, weights,
N_importance)
sample_directions = ray_directions.unsqueeze(-2).expand(
-1, -1, N_importance, -1).reshape(batch_size, -1, 3)
sample_coordinates = (
ray_origins.unsqueeze(-2) +
depths_fine * ray_directions.unsqueeze(-2)).reshape(
batch_size, -1, 3)
colors_fine, densities_fine = self.run_model(
planes, decoder, sample_coordinates, sample_directions,
rendering_options, batch_size, num_rays, N_importance)
# colors_fine = out['rgb']
# densities_fine = out['sigma']
colors_fine = colors_fine.reshape(batch_size, num_rays,
N_importance,
colors_fine.shape[-1])
densities_fine = densities_fine.reshape(batch_size, num_rays,
N_importance, 1)
if rendering_options.get('return_sampling_details_flag', False):
shape_synthesized.update({
# 'fine_coords': sample_coordinates.detach(),
# 'fine_densities': densities_fine.detach()
'fine_coords': sample_coordinates,
# 'fine_coords': sample_coordinates.reshape(batch_size, num_rays, N_importance, 3),
'fine_densities': densities_fine,
})
all_depths, all_colors, all_densities, indices = self.unify_samples(
depths_coarse, colors_coarse, densities_coarse, depths_fine,
colors_fine, densities_fine)
# Aggregate
rgb_final, depth_final, visibility, weights = self.ray_marcher(
all_colors, all_densities, all_depths, rendering_options)
else:
rgb_final, depth_final, visibility, weights = self.ray_marcher(
colors_coarse, densities_coarse, depths_coarse,
rendering_options)
if rendering_options.get('return_surface', False):
weight_total = weights.sum(2)
all_coords = torch.cat([
shape_synthesized['coarse_coords'],
shape_synthesized['fine_coords']
],
dim=-2) # B 4096 48+48 3
all_coords = torch.gather(all_coords, -2,
indices.expand(-1, -1, -1, 3))
composite_surface = torch.sum(weights * all_coords,
-2) / weight_total
# clip the composite to min/max range of depths
composite_surface = torch.nan_to_num(composite_surface,
float('inf'))
composite_surface = torch.clamp(composite_surface,
torch.min(all_coords),
torch.max(all_coords))
shape_synthesized['surface_coords'] = composite_surface
shape_synthesized.update({
# 'depth': depth_final.detach()
'depth': depth_final
})
ret_dict = {
'feature_samples': rgb_final,
'depth_samples': depth_final,
'weights_samples': weights.sum(2),
'shape_synthesized': shape_synthesized,
'visibility': visibility # T[..., -1]
}
if return_meta: # for pifu
all_coords = torch.cat([
shape_synthesized['coarse_coords'],
shape_synthesized['fine_coords'].reshape(
batch_size, num_rays, N_importance, 3)
],
dim=-2)
# 'fine_coords': sample_coordinates,
all_coords = torch.gather(all_coords, -2,
indices.expand(-1, -1, -1, 3))
ret_dict.update({
'all_coords': all_coords,
'feature_volume': all_colors,
'weights': weights
})
if rendering_options.get('return_sampling_details_flag', False):
ret_dict.update({'shape_synthesized': shape_synthesized})
# return rgb_final, depth_final, weights.sum(2), shape_synthesized # rgb_final, B, 4096, 32
# return rgb_final, depth_final, weights.sum(2)
return ret_dict
# old run_model
def _run_model(self, planes, decoder, sample_coordinates,
sample_directions, options):
sampled_features = sample_from_planes(self.plane_axes,
planes,
sample_coordinates,
padding_mode='zeros',
box_warp=options['box_warp'])
out = decoder(sampled_features, sample_directions)
if options.get('density_noise', 0) > 0:
out['sigma'] += torch.randn_like(
out['sigma']) * options['density_noise']
return out
def run_model(self, planes, decoder, sample_coordinates, sample_directions,
rendering_options, batch_size, num_rays, samples_per_ray):
""" a compat wrapper for Objaverse (bbox-sampling) and FFHQ/Shapenet-based rendering (ray-start/end sampling).
returns color and density
"""
if rendering_options.get('filter_out_of_bbox', False):
# Coarse Pass
colors, densities = self._forward_pass(
# depths=depths_coarse,
# ray_directions=ray_directions,
# ray_origins=ray_origins,
sample_coordinates,
sample_directions,
planes=planes,
decoder=decoder,
rendering_options=rendering_options,
batch_size=batch_size,
num_rays=num_rays,
samples_per_ray=samples_per_ray,
)
else:
out = self._run_model(planes, decoder, sample_coordinates,
sample_directions, rendering_options)
colors = out['rgb']
densities = out['sigma']
return colors, densities
def _forward_pass(
self,
sample_coordinates,
sample_directions,
# depths: torch.Tensor,
# ray_directions: torch.Tensor,
# ray_origins: torch.Tensor,
planes: torch.Tensor,
decoder: nn.Module,
rendering_options: dict,
batch_size,
num_rays,
samples_per_ray):
"""
Additional filtering is applied to filter out-of-box samples.
Modifications made by Zexin He.
"""
# context related variables
# batch_size, num_rays, samples_per_ray, _ = depths.shape
device = sample_coordinates.device
# define sample points with depths
# sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
# sample_coordinates = (ray_origins.unsqueeze(-2) + depths * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
# filter out-of-box samples
mask_inbox = \
(rendering_options['sampler_bbox_min'] <= sample_coordinates) & \
(sample_coordinates <= rendering_options['sampler_bbox_max'])
mask_inbox = mask_inbox.all(-1) # np.save('box.npy', mask_inbox.detach().cpu().numpy())
# forward model according to all samples
_out = self._run_model(planes, decoder, sample_coordinates,
sample_directions, rendering_options)
# set out-of-box samples to zeros(rgb) & -inf(sigma)
SAFE_GUARD = 3
DATA_TYPE = _out['sigma'].dtype
colors_pass = torch.zeros(batch_size,
num_rays * samples_per_ray,
# 3,
decoder.decoder_output_dim,
device=device,
dtype=DATA_TYPE)
densities_pass = torch.nan_to_num(
torch.full((batch_size, num_rays * samples_per_ray, 1),
-float('inf'),
device=device,
dtype=DATA_TYPE)) / SAFE_GUARD
colors_pass[mask_inbox], densities_pass[mask_inbox] = _out['rgb'][
mask_inbox], _out['sigma'][mask_inbox]
# reshape back
# colors_pass = colors_pass.reshape(batch_size, num_rays, samples_per_ray, colors_pass.shape[-1])
# densities_pass = densities_pass.reshape(batch_size, num_rays, samples_per_ray, densities_pass.shape[-1])
return colors_pass, densities_pass
def sort_samples(self, all_depths, all_colors, all_densities):
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(
all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2,
indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def unify_samples(self, depths1, colors1, densities1, depths2, colors2,
densities2):
all_depths = torch.cat([depths1, depths2], dim=-2)
all_colors = torch.cat([colors1, colors2], dim=-2)
all_densities = torch.cat([densities1, densities2], dim=-2)
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(
all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2,
indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities, indices
def sample_stratified(self,
ray_origins,
ray_start,
ray_end,
depth_resolution,
disparity_space_sampling=False):
"""
Return depths of approximately uniformly spaced samples along rays.
"""
N, M, _ = ray_origins.shape
if disparity_space_sampling:
depths_coarse = torch.linspace(0,
1,
depth_resolution,
device=ray_origins.device).reshape(
1, 1, depth_resolution,
1).repeat(N, M, 1, 1)
depth_delta = 1 / (depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
depths_coarse = 1. / (1. / ray_start * (1. - depths_coarse) +
1. / ray_end * depths_coarse)
else:
if type(ray_start) == torch.Tensor:
depths_coarse = math_utils.linspace(ray_start, ray_end,
depth_resolution).permute(
1, 2, 0, 3)
depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[
..., None]
else:
depths_coarse = torch.linspace(
ray_start,
ray_end,
depth_resolution,
device=ray_origins.device).reshape(1, 1, depth_resolution,
1).repeat(N, M, 1, 1)
depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
# print("ignore normal noise!!! for debugging")
return depths_coarse
def sample_importance(self, z_vals, weights, N_importance):
"""
Return depths of importance sampled points along rays. See NeRF importance sampling for more.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(
batch_size * num_rays,
-1) # -1 to account for loss of 1 sample in MipRayMarcher
# smooth weights
weights = torch.nn.functional.max_pool1d(
weights.unsqueeze(1).float(), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[:, :-1] + z_vals[:, 1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance).detach().reshape(
batch_size, num_rays,
N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""
Sample @N_importance samples from @bins with distribution defined by @weights.
Inputs:
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Outputs:
samples: the sampled samples
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps # prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1,
keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(
pdf, -1) # (N_rays, N_samples), cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[:, :1]), cdf],
-1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.clamp_min(inds - 1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above],
-1).view(N_rays, 2 * N_importance)
cdf_g = torch.gather(cdf, 1,
inds_sampled).view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1,
inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[..., 1] - cdf_g[..., 0]
denom[
denom <
eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
# anyway, therefore any value for it is fine (set to 1 here)
samples = bins_g[..., 0] + (u - cdf_g[..., 0]) / denom * (
bins_g[..., 1] - bins_g[..., 0])
return samples
class ImportanceRendererfg_bg(ImportanceRenderer):
"""
render foreground-background together, using nerfpp strategy.
"""
def __init__(self):
super().__init__()
def forward_background(self, bg_planes, decoder, ray_origins,
ray_directions, rendering_options):
# ! no importance sampling here.
# # background depth
depths_coarse = self.sample_stratified(
ray_origins, 0, 1, rendering_options['bg_depth_resolution'],
rendering_options['disparity_space_sampling']).squeeze(
-1) # remove the last 1 dim, B N S here
batch_size, num_rays, samples_per_ray = depths_coarse.shape
sample_directions = ray_directions.unsqueeze(-2).expand(
-1, -1, samples_per_ray, -1)
sample_origins = ray_origins.unsqueeze(-2).expand(
-1, -1, samples_per_ray, -1)
bg_sample_coordinates, _ = depth2pts_outside(
sample_origins, sample_directions,
depths_coarse) # [..., N_samples, 4]
out = self.run_model(bg_planes, decoder, bg_sample_coordinates,
sample_directions.reshape(batch_size, -1, 3),
rendering_options)
colors_coarse = out['rgb']
densities_coarse = out['sigma']
colors_coarse = colors_coarse.reshape(batch_size, num_rays,
samples_per_ray,
colors_coarse.shape[-1])
densities_coarse = densities_coarse.reshape(batch_size, num_rays,
samples_per_ray, 1)
rgb_final, depth_final, _, weights = self.ray_marcher(
colors_coarse, densities_coarse, depths_coarse, rendering_options)
ret_dict = {
'feature_samples': rgb_final,
'depth_samples': depth_final,
'weights_samples': weights.sum(2),
# 'visibility': visibility # T[..., -1]
}
return ret_dict
def forward(self,
planes,
decoder,
ray_origins,
ray_directions,
rendering_options,
return_meta=False):
fg_planes, bg_planes = torch.split(
planes, planes.shape[2] // 2,
dim=2) # concatenated on the Channel side
# ! composite fg/bg
fg_ret_dict = super().forward(fg_planes,
decoder,
ray_origins,
ray_directions,
rendering_options,
return_meta=False)
bg_ret_dict = self.forward_background(
bg_planes,
decoder,
ray_origins,
ray_directions,
rendering_options,
)
ret_dict = {**fg_ret_dict, 'bg_ret_dict': bg_ret_dict} # for compat
return ret_dict # will composite in the external triplane.py