# Acknowledgments **PySceneKit** would not be possible without the incredible work of various open-source projects and libraries that have paved the way for scene processing and visualization. I want to extend my heartfelt thanks to: ## Libraries - **Open3D**: A modern library for 3D data processing. [link](https://www.open3d.org/) - **Trimesh**: Trimesh is a pure Python 3.7+ library for loading and using triangular meshes with an emphasis on watertight surfaces. [link](https://trimesh.org/) - **PyMeshLab**: PyMeshLab is a Python library that interfaces to MeshLab. [link](https://pymeshlab.readthedocs.io/en/latest/) - **Numpy**: NumPy is an open source project that enables numerical computing with Python. [link](https://numpy.org/) ## 2D Scene Understanding Methods ### Depth Estimation - **MiDas**: Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. [link](https://github.com/isl-org/MiDaS) - **Depth Anything V2**: Robust and Accurate Depth Estimation for RGB images. [link](https://github.com/DepthAnything/Depth-Anything-V2) - **Metric3D**: Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image. [link](https://github.com/YvanYin/Metric3D) - **Depth Pro**: Sharp Monocular Metric Depth in Less Than a Second. [link](https://github.com/apple/ml-depth-pro) - **Lotus**: Diffusion-based Visual Foundation Model for High-quality Dense Prediction. [link](https://github.com/EnVision-Research/Lotus) ### Normal Estimation - **DSINE**: Rethinking Inductive Biases for Surface Normal Estimation. [link](https://baegwangbin.github.io/DSINE/) - **StableNormal**: Reducing Diffusion Variance for Stable and Sharp Normal. [link](https://github.com/Stable-X/StableNormal) - **Lotus**: Diffusion-based Visual Foundation Model for High-quality Dense Prediction. [link](https://github.com/EnVision-Research/Lotus) ### Image Segmentation - **OneFormer**: One Transformer to Rule Universal Image Segmentation. [link](https://github.com/SHI-Labs/OneFormer) - **Segment Anything**: A promptable segmentation system with zero-shot generalization to unfamiliar objects and images. [link](https://github.com/facebookresearch/segment-anything) ## 3D Scene Understanding Methods ### Mesh Reconstruction - **DUSt3R**: Geometric 3D Vision Made Easy. [link](https://dust3r.europe.naverlabs.com/) ### Mesh Simplification - **Instant Meshes**: Instant Field-Aligned Meshes. [link](https://github.com/wjakob/instant-meshes) ### Object Detection - **UniDet3D**: Multi-dataset Indoor 3D Object Detection. [link](https://github.com/3dlg-hcvc/unidet3d)