New PPO LunarLander
Browse files- LunarLander.zip +3 -0
- LunarLander/_stable_baselines3_version +1 -0
- LunarLander/data +92 -0
- LunarLander/policy.optimizer.pth +3 -0
- LunarLander/policy.pth +3 -0
- LunarLander/pytorch_variables.pth +3 -0
- LunarLander/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96919ce5e2f795452de0839bbcdfd989c1408716ca538237b83bf7ee8cfaef56
|
3 |
+
size 146608
|
LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
LunarLander/data
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97a884820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97a8848b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97a884940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97a8849d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb97a884a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb97a884af0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb97a884b80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb97a884c10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb97a884ca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb97a884d30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb97a884dc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb97a884e50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb97a8858c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678704066037992460,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": null,
|
59 |
+
"_last_episode_starts": {
|
60 |
+
":type:": "<class 'numpy.ndarray'>",
|
61 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
62 |
+
},
|
63 |
+
"_last_original_obs": null,
|
64 |
+
"_episode_num": 0,
|
65 |
+
"use_sde": false,
|
66 |
+
"sde_sample_freq": -1,
|
67 |
+
"_current_progress_remaining": -0.015808000000000044,
|
68 |
+
"ep_info_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMbPPY9RVcECUhpRSlIwBbJRNGQGMAXSUR0CaeNvfj0cwdX2UKGgGaAloD0MI3gGetPCXbECUhpRSlGgVTQ8BaBZHQJp5gS+QEIR1fZQoaAZoCWgPQwj67laWaIxtQJSGlFKUaBVNBgFoFkdAmnqcHGCI13V9lChoBmgJaA9DCEC9GTXfkG9AlIaUUpRoFU0oAWgWR0CafJMuez2OdX2UKGgGaAloD0MIat5xis52cECUhpRSlGgVTVgBaBZHQJp+WbExZdR1fZQoaAZoCWgPQwi0d0Zb1ZBwQJSGlFKUaBVNBgFoFkdAmoOC3XqZ+nV9lChoBmgJaA9DCHIycatgdnBAlIaUUpRoFU0GAWgWR0Ca7FYBvJiidX2UKGgGaAloD0MIfGRz1TxYbkCUhpRSlGgVTT4BaBZHQJrsvTQVsUJ1fZQoaAZoCWgPQwhivVErTLlxQJSGlFKUaBVNGgFoFkdAmu3Vme18cHV9lChoBmgJaA9DCJ0q3zMSEm5AlIaUUpRoFU0cAWgWR0Ca7s5eqrBCdX2UKGgGaAloD0MIZD+LpUiHa0CUhpRSlGgVTUQBaBZHQJrvkiaAnUl1fZQoaAZoCWgPQwg6z9iX7CxvQJSGlFKUaBVNKgFoFkdAmvEOTzND+nV9lChoBmgJaA9DCE+vlGWIWypAlIaUUpRoFUveaBZHQJry8fPomol1fZQoaAZoCWgPQwgUJSGRNhNjQJSGlFKUaBVN6ANoFkdAmvQA9aEBbXV9lChoBmgJaA9DCAbYR6eus3BAlIaUUpRoFU06AWgWR0Ca9FitJWeZdX2UKGgGaAloD0MIXMe44uKQJkCUhpRSlGgVS9doFkdAmvfSYCyQgnV9lChoBmgJaA9DCEaXN4frKWRAlIaUUpRoFU3oA2gWR0Ca+iTvRZ2ZdX2UKGgGaAloD0MIxEFClG9bcECUhpRSlGgVTQIBaBZHQJr6/MUypJh1fZQoaAZoCWgPQwhgkPRplQRvQJSGlFKUaBVNDAFoFkdAmvurQ5WBBnV9lChoBmgJaA9DCI178xsmD3BAlIaUUpRoFU0WAWgWR0Ca/NW5Yoy9dX2UKGgGaAloD0MIqDej5qtdb0CUhpRSlGgVTQcBaBZHQJr9Pfek56t1fZQoaAZoCWgPQwiJJ7uZEdtxQJSGlFKUaBVNFwFoFkdAmv1ySvC/GnV9lChoBmgJaA9DCP0wQnh0LHBAlIaUUpRoFU0gAWgWR0Ca/z0x/NJOdX2UKGgGaAloD0MI/YUeMXrbb0CUhpRSlGgVTQQBaBZHQJsAJeNT9891fZQoaAZoCWgPQwicielC7NVwQJSGlFKUaBVNXQNoFkdAmwBjAaef7XV9lChoBmgJaA9DCO2b+6sHt3BAlIaUUpRoFU0gAWgWR0CbAP9K28ZldX2UKGgGaAloD0MIN+Dzwwg6VkCUhpRSlGgVTegDaBZHQJsG5S/CZWt1fZQoaAZoCWgPQwiDFDyFnJ9wQJSGlFKUaBVNNAFoFkdAmwcL61stTXV9lChoBmgJaA9DCPFiYYicOG5AlIaUUpRoFU0jAWgWR0CbBzGYa5wwdX2UKGgGaAloD0MIlfQwtLpJbECUhpRSlGgVTQkBaBZHQJsH93JPqLV1fZQoaAZoCWgPQwg10HzOXa1sQJSGlFKUaBVNCwFoFkdAmwiEUCaJAXV9lChoBmgJaA9DCJ8cBYjCWnBAlIaUUpRoFU0RAWgWR0CbCwddmg8KdX2UKGgGaAloD0MIIXh8e5cackCUhpRSlGgVTQgBaBZHQJsLn2M85jp1fZQoaAZoCWgPQwh1PjxLEGNxQJSGlFKUaBVNKQJoFkdAmwv7t3OfNHV9lChoBmgJaA9DCIMVp1qLSXFAlIaUUpRoFU0QAWgWR0CbDEBX0XgtdX2UKGgGaAloD0MITMRb5x8lcECUhpRSlGgVTTEBaBZHQJsOPF3pwCN1fZQoaAZoCWgPQwj+KVWibKNgQJSGlFKUaBVN6ANoFkdAmxBnj2i+L3V9lChoBmgJaA9DCGh6ibFMrGBAlIaUUpRoFU3oA2gWR0CbEXTspobodX2UKGgGaAloD0MIMe2b+6vIb0CUhpRSlGgVTQQBaBZHQJsSQZpBX0Z1fZQoaAZoCWgPQwhagSGrW5lvQJSGlFKUaBVNFwFoFkdAmxLpvxYq5XV9lChoBmgJaA9DCG9+w0RD6HBAlIaUUpRoFU0lAWgWR0CbE74x1xKhdX2UKGgGaAloD0MI5zki3yWmYECUhpRSlGgVTegDaBZHQJsT7EXLvCx1fZQoaAZoCWgPQwh3K0t0FrRtQJSGlFKUaBVNGwFoFkdAmxQLfUF0P3V9lChoBmgJaA9DCOiC+pa59W9AlIaUUpRoFU0IAWgWR0CbFeWT5ftydX2UKGgGaAloD0MInWNA9jqEcECUhpRSlGgVTUYBaBZHQJsWKdK/VRV1fZQoaAZoCWgPQwiIuaRq+yxxQJSGlFKUaBVNEgFoFkdAmxa/8uSOinV9lChoBmgJaA9DCDJxqyCG3W5AlIaUUpRoFU0LAWgWR0CbFskQPI4mdX2UKGgGaAloD0MIFM5uLVMbcECUhpRSlGgVTSABaBZHQJsXtO8Cgbp1fZQoaAZoCWgPQwinA1lPLYZvQJSGlFKUaBVNHAFoFkdAmxlHhjvuxHV9lChoBmgJaA9DCOChKNCnDXJAlIaUUpRoFU3AAmgWR0CbGi+5vtMPdX2UKGgGaAloD0MIfV2G/zRFcECUhpRSlGgVTQkBaBZHQJsaXivPkaN1fZQoaAZoCWgPQwiWehaEcotuQJSGlFKUaBVNGwFoFkdAmxwA/9pAU3V9lChoBmgJaA9DCEF9y5wu0WxAlIaUUpRoFU0cAWgWR0CbHNV+Zw4sdX2UKGgGaAloD0MIbSBdbNpSaECUhpRSlGgVTTADaBZHQJsc1fD1oQF1fZQoaAZoCWgPQwjABkSIK5luQJSGlFKUaBVNHAFoFkdAmx1k+HJtBXV9lChoBmgJaA9DCPq5oSm7bG9AlIaUUpRoFU0HAWgWR0CbHX5SFXaKdX2UKGgGaAloD0MIX/BpTp7FcUCUhpRSlGgVTQ0BaBZHQJsdkKKHfuV1fZQoaAZoCWgPQwjwTj49NuVxQJSGlFKUaBVNDQFoFkdAmx3EBKcurnV9lChoBmgJaA9DCN9rCI7Lm29AlIaUUpRoFU0QAWgWR0CbH53XZoPDdX2UKGgGaAloD0MIoaF/gguRYUCUhpRSlGgVTegDaBZHQJsf4DvE0i11fZQoaAZoCWgPQwgGf7+YreNuQJSGlFKUaBVNBwFoFkdAmx/tUKiPAHV9lChoBmgJaA9DCC+kw0OYmG9AlIaUUpRoFU07AWgWR0CbIRqREF4cdX2UKGgGaAloD0MINQpJZnUtb0CUhpRSlGgVTRwBaBZHQJskFKujh1l1fZQoaAZoCWgPQwh1ApoIGwVxQJSGlFKUaBVNEwFoFkdAmyUQlWwNb3V9lChoBmgJaA9DCGo0uRgDXm9AlIaUUpRoFU0SAWgWR0CbJUbKRuCPdX2UKGgGaAloD0MIRIfAkcBtbUCUhpRSlGgVTWgBaBZHQJsltyyUs4F1fZQoaAZoCWgPQwgtmPijKBdwQJSGlFKUaBVL/2gWR0CbJ33mV7hOdX2UKGgGaAloD0MIhllo5zQ7cUCUhpRSlGgVTQQBaBZHQJsnuzY287J1fZQoaAZoCWgPQwitNCkFnb5xQJSGlFKUaBVL+GgWR0CbKBUIcBEKdX2UKGgGaAloD0MIVHO5wVC/cECUhpRSlGgVS/doFkdAmyggmu1WsHV9lChoBmgJaA9DCISgo1WtaHFAlIaUUpRoFU09AWgWR0CbKUPmPo3adX2UKGgGaAloD0MIGk0uxsB9bkCUhpRSlGgVTR8BaBZHQJsqG1twaR91fZQoaAZoCWgPQwguPC8Vm1lwQJSGlFKUaBVNMQFoFkdAmypg+QlrunV9lChoBmgJaA9DCFGlZg+0+nBAlIaUUpRoFU0KAWgWR0CbK6MtsenydX2UKGgGaAloD0MIeEfGajOScECUhpRSlGgVTRMBaBZHQJssRnpSrHV1fZQoaAZoCWgPQwhkA+lik05wQJSGlFKUaBVL/mgWR0CbLKG2kSEldX2UKGgGaAloD0MIOey+Y/hqcUCUhpRSlGgVTTMBaBZHQJstl+8XenB1fZQoaAZoCWgPQwj6Jk2DYmNwQJSGlFKUaBVNAwFoFkdAmy+xp5/smnV9lChoBmgJaA9DCGiWBKipf25AlIaUUpRoFU0JAWgWR0CbMYzySV4YdX2UKGgGaAloD0MIHyxjQzeTbkCUhpRSlGgVTRIBaBZHQJsxjv0AcT91fZQoaAZoCWgPQwhanDHMSS9wQJSGlFKUaBVNJwFoFkdAmzJfOt4iYHV9lChoBmgJaA9DCA3GiEShaXBAlIaUUpRoFU0gAWgWR0CbNM9FF2FGdX2UKGgGaAloD0MIBrggW5ZDcUCUhpRSlGgVS/FoFkdAmzTQIt16mnV9lChoBmgJaA9DCJIIjWAj4nBAlIaUUpRoFU04AWgWR0CbNSrZ8KG+dX2UKGgGaAloD0MIgsr491mmcECUhpRSlGgVTRcBaBZHQJs1aW2PT5R1fZQoaAZoCWgPQwjUfJV8bAVxQJSGlFKUaBVNGgFoFkdAmzZVOKwY+HV9lChoBmgJaA9DCC/f+rDeTW5AlIaUUpRoFUv+aBZHQJs26ZDzAet1fZQoaAZoCWgPQwga+bziqfhtQJSGlFKUaBVNGgFoFkdAmzguQdS2pnV9lChoBmgJaA9DCDrpfeMrz3FAlIaUUpRoFU3HAWgWR0CbOlGc4HX3dX2UKGgGaAloD0MIEFt6NNU1bkCUhpRSlGgVTQUBaBZHQJs7fb/Ot4l1fZQoaAZoCWgPQwgsms5OxjtxQJSGlFKUaBVNAAFoFkdAmzv7Z39rGnV9lChoBmgJaA9DCNZvJqZLDHBAlIaUUpRoFU1CAWgWR0CbPHSFoL5RdX2UKGgGaAloD0MI2NZP/9mmbUCUhpRSlGgVS/1oFkdAmz4mK2rn1XV9lChoBmgJaA9DCFcHQNzVuG5AlIaUUpRoFUv4aBZHQJs+Y9ovi991fZQoaAZoCWgPQwipaoKoe8tgQJSGlFKUaBVN6ANoFkdAmz7/IGQjlnV9lChoBmgJaA9DCL4yb9U1HHBAlIaUUpRoFU0bAWgWR0CbP0X/YJ3QdX2UKGgGaAloD0MInl2+9WHdcECUhpRSlGgVS/ZoFkdAmz+jm4iHI3V9lChoBmgJaA9DCJRqn45Ht21AlIaUUpRoFU0tAWgWR0CbQJ19v0iAdX2UKGgGaAloD0MInKVkOck0cUCUhpRSlGgVS/JoFkdAm0F85CF9KHV9lChoBmgJaA9DCP5g4Ln3HnFAlIaUUpRoFU0nAWgWR0CbQhI3R5TqdWUu"
|
71 |
+
},
|
72 |
+
"ep_success_buffer": {
|
73 |
+
":type:": "<class 'collections.deque'>",
|
74 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
75 |
+
},
|
76 |
+
"_n_updates": 310,
|
77 |
+
"n_steps": 2048,
|
78 |
+
"gamma": 0.99,
|
79 |
+
"gae_lambda": 0.95,
|
80 |
+
"ent_coef": 0.0,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 10,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null
|
92 |
+
}
|
LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63b9b255bfe4b18a4b8293d991e3cc826f45ee3a7553827d9e5ad9316b82d9b7
|
3 |
+
size 88057
|
LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a2a802cf07feafe40e5dc4e56c8f5ada354294dcce62d376540c68275100b61
|
3 |
+
size 43393
|
LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 238.53 +/- 44.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97a884820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97a8848b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97a884940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97a8849d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb97a884a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb97a884af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb97a884b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb97a884c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb97a884ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb97a884d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb97a884dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb97a884e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb97a8858c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678704066037992460, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMbPPY9RVcECUhpRSlIwBbJRNGQGMAXSUR0CaeNvfj0cwdX2UKGgGaAloD0MI3gGetPCXbECUhpRSlGgVTQ8BaBZHQJp5gS+QEIR1fZQoaAZoCWgPQwj67laWaIxtQJSGlFKUaBVNBgFoFkdAmnqcHGCI13V9lChoBmgJaA9DCEC9GTXfkG9AlIaUUpRoFU0oAWgWR0CafJMuez2OdX2UKGgGaAloD0MIat5xis52cECUhpRSlGgVTVgBaBZHQJp+WbExZdR1fZQoaAZoCWgPQwi0d0Zb1ZBwQJSGlFKUaBVNBgFoFkdAmoOC3XqZ+nV9lChoBmgJaA9DCHIycatgdnBAlIaUUpRoFU0GAWgWR0Ca7FYBvJiidX2UKGgGaAloD0MIfGRz1TxYbkCUhpRSlGgVTT4BaBZHQJrsvTQVsUJ1fZQoaAZoCWgPQwhivVErTLlxQJSGlFKUaBVNGgFoFkdAmu3Vme18cHV9lChoBmgJaA9DCJ0q3zMSEm5AlIaUUpRoFU0cAWgWR0Ca7s5eqrBCdX2UKGgGaAloD0MIZD+LpUiHa0CUhpRSlGgVTUQBaBZHQJrvkiaAnUl1fZQoaAZoCWgPQwg6z9iX7CxvQJSGlFKUaBVNKgFoFkdAmvEOTzND+nV9lChoBmgJaA9DCE+vlGWIWypAlIaUUpRoFUveaBZHQJry8fPomol1fZQoaAZoCWgPQwgUJSGRNhNjQJSGlFKUaBVN6ANoFkdAmvQA9aEBbXV9lChoBmgJaA9DCAbYR6eus3BAlIaUUpRoFU06AWgWR0Ca9FitJWeZdX2UKGgGaAloD0MIXMe44uKQJkCUhpRSlGgVS9doFkdAmvfSYCyQgnV9lChoBmgJaA9DCEaXN4frKWRAlIaUUpRoFU3oA2gWR0Ca+iTvRZ2ZdX2UKGgGaAloD0MIxEFClG9bcECUhpRSlGgVTQIBaBZHQJr6/MUypJh1fZQoaAZoCWgPQwhgkPRplQRvQJSGlFKUaBVNDAFoFkdAmvurQ5WBBnV9lChoBmgJaA9DCI178xsmD3BAlIaUUpRoFU0WAWgWR0Ca/NW5Yoy9dX2UKGgGaAloD0MIqDej5qtdb0CUhpRSlGgVTQcBaBZHQJr9Pfek56t1fZQoaAZoCWgPQwiJJ7uZEdtxQJSGlFKUaBVNFwFoFkdAmv1ySvC/GnV9lChoBmgJaA9DCP0wQnh0LHBAlIaUUpRoFU0gAWgWR0Ca/z0x/NJOdX2UKGgGaAloD0MI/YUeMXrbb0CUhpRSlGgVTQQBaBZHQJsAJeNT9891fZQoaAZoCWgPQwicielC7NVwQJSGlFKUaBVNXQNoFkdAmwBjAaef7XV9lChoBmgJaA9DCO2b+6sHt3BAlIaUUpRoFU0gAWgWR0CbAP9K28ZldX2UKGgGaAloD0MIN+Dzwwg6VkCUhpRSlGgVTegDaBZHQJsG5S/CZWt1fZQoaAZoCWgPQwiDFDyFnJ9wQJSGlFKUaBVNNAFoFkdAmwcL61stTXV9lChoBmgJaA9DCPFiYYicOG5AlIaUUpRoFU0jAWgWR0CbBzGYa5wwdX2UKGgGaAloD0MIlfQwtLpJbECUhpRSlGgVTQkBaBZHQJsH93JPqLV1fZQoaAZoCWgPQwg10HzOXa1sQJSGlFKUaBVNCwFoFkdAmwiEUCaJAXV9lChoBmgJaA9DCJ8cBYjCWnBAlIaUUpRoFU0RAWgWR0CbCwddmg8KdX2UKGgGaAloD0MIIXh8e5cackCUhpRSlGgVTQgBaBZHQJsLn2M85jp1fZQoaAZoCWgPQwh1PjxLEGNxQJSGlFKUaBVNKQJoFkdAmwv7t3OfNHV9lChoBmgJaA9DCIMVp1qLSXFAlIaUUpRoFU0QAWgWR0CbDEBX0XgtdX2UKGgGaAloD0MITMRb5x8lcECUhpRSlGgVTTEBaBZHQJsOPF3pwCN1fZQoaAZoCWgPQwj+KVWibKNgQJSGlFKUaBVN6ANoFkdAmxBnj2i+L3V9lChoBmgJaA9DCGh6ibFMrGBAlIaUUpRoFU3oA2gWR0CbEXTspobodX2UKGgGaAloD0MIMe2b+6vIb0CUhpRSlGgVTQQBaBZHQJsSQZpBX0Z1fZQoaAZoCWgPQwhagSGrW5lvQJSGlFKUaBVNFwFoFkdAmxLpvxYq5XV9lChoBmgJaA9DCG9+w0RD6HBAlIaUUpRoFU0lAWgWR0CbE74x1xKhdX2UKGgGaAloD0MI5zki3yWmYECUhpRSlGgVTegDaBZHQJsT7EXLvCx1fZQoaAZoCWgPQwh3K0t0FrRtQJSGlFKUaBVNGwFoFkdAmxQLfUF0P3V9lChoBmgJaA9DCOiC+pa59W9AlIaUUpRoFU0IAWgWR0CbFeWT5ftydX2UKGgGaAloD0MInWNA9jqEcECUhpRSlGgVTUYBaBZHQJsWKdK/VRV1fZQoaAZoCWgPQwiIuaRq+yxxQJSGlFKUaBVNEgFoFkdAmxa/8uSOinV9lChoBmgJaA9DCDJxqyCG3W5AlIaUUpRoFU0LAWgWR0CbFskQPI4mdX2UKGgGaAloD0MIFM5uLVMbcECUhpRSlGgVTSABaBZHQJsXtO8Cgbp1fZQoaAZoCWgPQwinA1lPLYZvQJSGlFKUaBVNHAFoFkdAmxlHhjvuxHV9lChoBmgJaA9DCOChKNCnDXJAlIaUUpRoFU3AAmgWR0CbGi+5vtMPdX2UKGgGaAloD0MIfV2G/zRFcECUhpRSlGgVTQkBaBZHQJsaXivPkaN1fZQoaAZoCWgPQwiWehaEcotuQJSGlFKUaBVNGwFoFkdAmxwA/9pAU3V9lChoBmgJaA9DCEF9y5wu0WxAlIaUUpRoFU0cAWgWR0CbHNV+Zw4sdX2UKGgGaAloD0MIbSBdbNpSaECUhpRSlGgVTTADaBZHQJsc1fD1oQF1fZQoaAZoCWgPQwjABkSIK5luQJSGlFKUaBVNHAFoFkdAmx1k+HJtBXV9lChoBmgJaA9DCPq5oSm7bG9AlIaUUpRoFU0HAWgWR0CbHX5SFXaKdX2UKGgGaAloD0MIX/BpTp7FcUCUhpRSlGgVTQ0BaBZHQJsdkKKHfuV1fZQoaAZoCWgPQwjwTj49NuVxQJSGlFKUaBVNDQFoFkdAmx3EBKcurnV9lChoBmgJaA9DCN9rCI7Lm29AlIaUUpRoFU0QAWgWR0CbH53XZoPDdX2UKGgGaAloD0MIoaF/gguRYUCUhpRSlGgVTegDaBZHQJsf4DvE0i11fZQoaAZoCWgPQwgGf7+YreNuQJSGlFKUaBVNBwFoFkdAmx/tUKiPAHV9lChoBmgJaA9DCC+kw0OYmG9AlIaUUpRoFU07AWgWR0CbIRqREF4cdX2UKGgGaAloD0MINQpJZnUtb0CUhpRSlGgVTRwBaBZHQJskFKujh1l1fZQoaAZoCWgPQwh1ApoIGwVxQJSGlFKUaBVNEwFoFkdAmyUQlWwNb3V9lChoBmgJaA9DCGo0uRgDXm9AlIaUUpRoFU0SAWgWR0CbJUbKRuCPdX2UKGgGaAloD0MIRIfAkcBtbUCUhpRSlGgVTWgBaBZHQJsltyyUs4F1fZQoaAZoCWgPQwgtmPijKBdwQJSGlFKUaBVL/2gWR0CbJ33mV7hOdX2UKGgGaAloD0MIhllo5zQ7cUCUhpRSlGgVTQQBaBZHQJsnuzY287J1fZQoaAZoCWgPQwitNCkFnb5xQJSGlFKUaBVL+GgWR0CbKBUIcBEKdX2UKGgGaAloD0MIVHO5wVC/cECUhpRSlGgVS/doFkdAmyggmu1WsHV9lChoBmgJaA9DCISgo1WtaHFAlIaUUpRoFU09AWgWR0CbKUPmPo3adX2UKGgGaAloD0MIGk0uxsB9bkCUhpRSlGgVTR8BaBZHQJsqG1twaR91fZQoaAZoCWgPQwguPC8Vm1lwQJSGlFKUaBVNMQFoFkdAmypg+QlrunV9lChoBmgJaA9DCFGlZg+0+nBAlIaUUpRoFU0KAWgWR0CbK6MtsenydX2UKGgGaAloD0MIeEfGajOScECUhpRSlGgVTRMBaBZHQJssRnpSrHV1fZQoaAZoCWgPQwhkA+lik05wQJSGlFKUaBVL/mgWR0CbLKG2kSEldX2UKGgGaAloD0MIOey+Y/hqcUCUhpRSlGgVTTMBaBZHQJstl+8XenB1fZQoaAZoCWgPQwj6Jk2DYmNwQJSGlFKUaBVNAwFoFkdAmy+xp5/smnV9lChoBmgJaA9DCGiWBKipf25AlIaUUpRoFU0JAWgWR0CbMYzySV4YdX2UKGgGaAloD0MIHyxjQzeTbkCUhpRSlGgVTRIBaBZHQJsxjv0AcT91fZQoaAZoCWgPQwhanDHMSS9wQJSGlFKUaBVNJwFoFkdAmzJfOt4iYHV9lChoBmgJaA9DCA3GiEShaXBAlIaUUpRoFU0gAWgWR0CbNM9FF2FGdX2UKGgGaAloD0MIBrggW5ZDcUCUhpRSlGgVS/FoFkdAmzTQIt16mnV9lChoBmgJaA9DCJIIjWAj4nBAlIaUUpRoFU04AWgWR0CbNSrZ8KG+dX2UKGgGaAloD0MIgsr491mmcECUhpRSlGgVTRcBaBZHQJs1aW2PT5R1fZQoaAZoCWgPQwjUfJV8bAVxQJSGlFKUaBVNGgFoFkdAmzZVOKwY+HV9lChoBmgJaA9DCC/f+rDeTW5AlIaUUpRoFUv+aBZHQJs26ZDzAet1fZQoaAZoCWgPQwga+bziqfhtQJSGlFKUaBVNGgFoFkdAmzguQdS2pnV9lChoBmgJaA9DCDrpfeMrz3FAlIaUUpRoFU3HAWgWR0CbOlGc4HX3dX2UKGgGaAloD0MIEFt6NNU1bkCUhpRSlGgVTQUBaBZHQJs7fb/Ot4l1fZQoaAZoCWgPQwgsms5OxjtxQJSGlFKUaBVNAAFoFkdAmzv7Z39rGnV9lChoBmgJaA9DCNZvJqZLDHBAlIaUUpRoFU1CAWgWR0CbPHSFoL5RdX2UKGgGaAloD0MI2NZP/9mmbUCUhpRSlGgVS/1oFkdAmz4mK2rn1XV9lChoBmgJaA9DCFcHQNzVuG5AlIaUUpRoFUv4aBZHQJs+Y9ovi991fZQoaAZoCWgPQwipaoKoe8tgQJSGlFKUaBVN6ANoFkdAmz7/IGQjlnV9lChoBmgJaA9DCL4yb9U1HHBAlIaUUpRoFU0bAWgWR0CbP0X/YJ3QdX2UKGgGaAloD0MInl2+9WHdcECUhpRSlGgVS/ZoFkdAmz+jm4iHI3V9lChoBmgJaA9DCJRqn45Ht21AlIaUUpRoFU0tAWgWR0CbQJ19v0iAdX2UKGgGaAloD0MInKVkOck0cUCUhpRSlGgVS/JoFkdAm0F85CF9KHV9lChoBmgJaA9DCP5g4Ln3HnFAlIaUUpRoFU0nAWgWR0CbQhI3R5TqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (220 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 238.5311451980734, "std_reward": 44.75471434271277, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T11:38:48.683666"}
|