--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: nees-bert-base-portuguese-cased-finetuned-ner results: [] --- # nees-bert-base-portuguese-cased-finetuned-ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0255 - Precision: 0.6545 - Recall: 0.7802 - F1: 0.7119 - Accuracy: 0.9952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0344 | 1.0 | 519 | 0.0189 | 0.0 | 0.0 | 0.0 | 0.9949 | | 0.0145 | 2.0 | 1038 | 0.0112 | 0.5050 | 0.4737 | 0.4888 | 0.9952 | | 0.0121 | 3.0 | 1557 | 0.0132 | 0.3684 | 0.1300 | 0.1922 | 0.9953 | | 0.0107 | 4.0 | 2076 | 0.0239 | 0.6366 | 0.7647 | 0.6948 | 0.9955 | | 0.0056 | 5.0 | 2595 | 0.0151 | 0.6845 | 0.7121 | 0.6980 | 0.9950 | | 0.0053 | 6.0 | 3114 | 0.0278 | 0.6432 | 0.7368 | 0.6869 | 0.9943 | | 0.0047 | 7.0 | 3633 | 0.0199 | 0.5682 | 0.7740 | 0.6553 | 0.9953 | | 0.0043 | 8.0 | 4152 | 0.0231 | 0.6429 | 0.7802 | 0.7049 | 0.9951 | | 0.0022 | 9.0 | 4671 | 0.0255 | 0.6487 | 0.7833 | 0.7097 | 0.9955 | | 0.0025 | 10.0 | 5190 | 0.0255 | 0.6545 | 0.7802 | 0.7119 | 0.9952 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2