Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +108 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 290.71 +/- 18.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6996b17830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6996b178c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6996b17950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6996b179e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6996b17a70>", "forward": "<function ActorCriticPolicy.forward at 0x7f6996b17b00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6996b17b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6996b17c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6996b17cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6996b17d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6996b17dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6996b17e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6996b63990>"}, "verbose": 1, "policy_kwargs": {"net_arch": {"pi": [128, 128], "vf": [128, 128, 128]}}, "num_timesteps": 8912896, "_total_timesteps": 50000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1689029026618082254, "learning_rate": 1e-08, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.82174208, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCgN3jdYXCMAWyUS66MAXSUR0CziT4na37UdX2UKGgGR0Bzimee4Cp4aAdLqmgIR0CziUIB3iaRdX2UKGgGR0Bym5KVY6n0aAdLwWgIR0CziWGbsniOdX2UKGgGR0BzCcvnKW9laAdLnmgIR0CziWJr+HafdX2UKGgGR0ByLG7L+xW1aAdLkGgIR0CziWXeBQN1dX2UKGgGR0ByIQLRa5f/aAdLyWgIR0CziXotg8bJdX2UKGgGR0Bxc9pQDV6NaAdLtmgIR0CziXuJHiFTdX2UKGgGR0Bwg+FoL5RCaAdLnWgIR0CziXwVoHs1dX2UKGgGR0ByBT5/LDAKaAdLxGgIR0CziX3LNfPYdX2UKGgGR0Bvv0+1SflIaAdLn2gIR0CziYKVY6n0dX2UKGgGR0ByDW9FnZkDaAdLwGgIR0CziYoVM23sdX2UKGgGR0BxjL2nKnvVaAdLimgIR0CziaIS13MZdX2UKGgGR0BxtEytV7x/aAdL5WgIR0Czialy/9HddX2UKGgGR0BxqmUSqU/waAdLtmgIR0Cziaq5TZQIdX2UKGgGR0BylST+vQnhaAdLumgIR0CzibWce8wpdX2UKGgGR0BygBJlJ6IFaAdLj2gIR0CzibWK2rn1dX2UKGgGR0BzdKbtqpLmaAdLw2gIR0Czib61w5vMdX2UKGgGR0BwvpVfeDWcaAdLomgIR0CziegfMfRvdX2UKGgGR0Bw1RSOzY29aAdLqmgIR0CzifAZjx0/dX2UKGgGR0BydEPAfuCxaAdL0mgIR0CzifJQP7N0dX2UKGgGR0B0pwJVsDW9aAdLqWgIR0CzifK42CNCdX2UKGgGR0BygxkpZwGXaAdLlGgIR0CzifaMFUyYdX2UKGgGR0BySBEE1VHXaAdLomgIR0CzigLg0j1PdX2UKGgGR0BxMeoJiRW+aAdLpmgIR0CzigSIk7fYdX2UKGgGR0ByN0PRRdhRaAdLoWgIR0CzihEZJkGzdX2UKGgGR0BwAXDhtLteaAdLk2gIR0Czih83IdU9dX2UKGgGR0Byi63I+4b0aAdLwGgIR0CziiMr/bTMdX2UKGgGR0Bxcv9xZMcqaAdL02gIR0Czii35zo2XdX2UKGgGR0BuRTyvs7dSaAdLrWgIR0Czijxzq8lHdX2UKGgGR0BxVvFERaouaAdLvGgIR0CzilYf8uSPdX2UKGgGR0BykkTWXkYGaAdLvmgIR0CzilfpljEvdX2UKGgGR0BzM9RJmNBGaAdLxmgIR0CzimeRPoFFdX2UKGgGR0Bzy5FWn0kGaAdL32gIR0CzimiDAaegdX2UKGgGR0BysKP/7zkIaAdLoWgIR0CzinEyHmA9dX2UKGgGR0BwzlBX0XgtaAdLlmgIR0CzinHIU8FIdX2UKGgGR0BMzejmCAc1aAdLV2gIR0CzioXdsSCfdX2UKGgGR0ByE0GRmseXaAdLtmgIR0Cziov3WWhRdX2UKGgGR0BxN9oxpL26aAdLuWgIR0CzioxvegtfdX2UKGgGR0Bx4KRaHKwIaAdLtWgIR0Czio81wYLtdX2UKGgGR0BxptJBgNPQaAdLr2gIR0CzipXxFy7xdX2UKGgGR0BxHoYJmdy1aAdLumgIR0CziqB5HEuQdX2UKGgGR0BxMitdRiw0aAdLrGgIR0CziqGe+VTrdX2UKGgGR0BwLYbBGhEjaAdLkWgIR0Cziqb0rbxmdX2UKGgGR0Bx93rfLs8gaAdLtWgIR0Czirn5WRzSdX2UKGgGR0BxdQxoIv8JaAdLwGgIR0Czir90/4ZddX2UKGgGR0Bw1MHObAk+aAdLnmgIR0Czitsi0OVgdX2UKGgGR0BwAFYmsvIwaAdLnmgIR0Cziu2x2SuAdX2UKGgGR0ByHlzHS4OMaAdLuWgIR0CzivIz3yqddX2UKGgGR0ByDCROk+HKaAdLomgIR0CzivslolD4dX2UKGgGR0BEu25QP7N0aAdLUWgIR0CziwGMS9M9dX2UKGgGR0BycbM0P6KtaAdLt2gIR0CziwLayrxRdX2UKGgGR0BxOyJSBK+SaAdLjWgIR0Cziw7Pt2LYdX2UKGgGR0BzCOb7TDwZaAdLmGgIR0CzixDL0SRKdX2UKGgGR0BxwknlXA/LaAdLpGgIR0Czixg0TDfndX2UKGgGR0BxpVlnRLK3aAdLyWgIR0CzixvcFhXsdX2UKGgGR0BwQIAWBSUDaAdLvGgIR0CziyWvB7/odX2UKGgGR0Bxrff8/D+BaAdLsWgIR0CzizjUNKAbdX2UKGgGR0ByUIwco6S1aAdL0mgIR0Cziz47zTWodX2UKGgGR0BzRRJCjUNKaAdLxGgIR0Czi0fx6OYIdX2UKGgGR0Bx54BaLXMAaAdLwmgIR0Czi00jLSuydX2UKGgGR0BxfZ+UhV2iaAdLv2gIR0Czi2QS8J2MdX2UKGgGR0Bzk4HNX5nEaAdLnWgIR0Czi3O7QLNOdX2UKGgGR0BxRLdqL0jDaAdLj2gIR0Czi3slb/wRdX2UKGgGR0ByJcSIxgy/aAdLo2gIR0Czi4a8xsVMdX2UKGgGR0Bw+WGFi8WcaAdLsmgIR0Czi4shkiD/dX2UKGgGR0Bygp9ZzPrwaAdLz2gIR0Czi45jDsMRdX2UKGgGR0Bv2Z+BpYcOaAdLnWgIR0Czi5V18stkdX2UKGgGR0A2Isyi22G7aAdLYGgIR0Czi5uW4Vh1dX2UKGgGR0ByDz0voNd7aAdLzGgIR0Czi7HPiT+vdX2UKGgGR0BxkskJKJ2uaAdLrWgIR0Czi7s8kleGdX2UKGgGR0Bx+qnwXqJNaAdLyGgIR0Czi71qN6w/dX2UKGgGR0BzcC9du5z6aAdLwGgIR0Czi74nv2GqdX2UKGgGR0Bzmh5v99+gaAdLxmgIR0Czi8bJfYz0dX2UKGgGR0BwZvAEdNnHaAdLq2gIR0Czi81poK2KdX2UKGgGR0ByH694/u9faAdLhGgIR0Czi9cMI/qxdX2UKGgGR0A4NJrcj7hvaAdLZWgIR0Czi+Xyd4FBdX2UKGgGR0BzP3WjGkvcaAdLyWgIR0Czi+1cdHUddX2UKGgGR0By+M4ZMtbtaAdLo2gIR0CzjALxI8QqdX2UKGgGR0BzrlNlAeJYaAdL12gIR0CzjAmOIZZTdX2UKGgGR0BwyLIn0CiiaAdLqGgIR0CzjBrEpAlfdX2UKGgGR0BwQf+3pfQbaAdLmGgIR0CzjBvIfbKzdX2UKGgGR0ByD970Fr2yaAdLwWgIR0CzjCWkvboKdX2UKGgGR0BwhRZV4oqkaAdLoGgIR0CzjEEI9kjHdX2UKGgGR0Bw1WrPt2LYaAdLlGgIR0CzjEJgG8mKdX2UKGgGR0BzBqMS9M9KaAdLwWgIR0CzjEfSlWOqdX2UKGgGR0Bxm5EH+qBFaAdLkmgIR0CzjFFOfukUdX2UKGgGR0Bzh5NGmUGFaAdL4mgIR0CzjFSWAwwkdX2UKGgGR0ByT7ThHbypaAdLsGgIR0CzjFq5Xlr/dX2UKGgGR0BziS8vmHQAaAdLtWgIR0CzjF0SM98rdX2UKGgGR0BxyJiy6cy4aAdLkmgIR0CzjGenyd4FdX2UKGgGR0ByrL70nPVvaAdLq2gIR0CzjG4gaFVUdX2UKGgGR0Bx8HsQd0aIaAdLnGgIR0CzjHXN5dGBdX2UKGgGR0By0jOKO1fFaAdLz2gIR0CzjHrfUF0QdX2UKGgGR0ByMULpiZv2aAdLpGgIR0CzjI4Ajps5dX2UKGgGR0Bxp0x20Re1aAdLoWgIR0CzjJFMEidKdX2UKGgGR0ByfLkn1FpgaAdLfGgIR0CzjKZjMFEBdX2UKGgGR0BwCDIU8FINaAdLqGgIR0CzjKglF+d9dX2UKGgGR0BzbYTewcHXaAdLrWgIR0CzjKs5jpcHdX2UKGgGR0BylVIxxkupaAdLimgIR0CzjLcv/R3NdX2UKGgGR0BwPE482aUiaAdLk2gIR0CzjLjsyBTXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3940, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gASVlAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsIhZRoGolDCAEBAQEBAQEBlHSUYowGX3NoYXBllEsIhZSMA2xvd5RoEGgSSwCFlGgUh5RSlChLAUsIhZRoColDIAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsIhZRoColDIAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lHSUYowIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gASVnwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCeKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxiL2hvbWUvbGxpZmVib2EvYW5hY29uZGEzL2VudnMvZGxlYXJuL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9sbGlmZWJvYS9hbmFjb25kYTMvZW52cy9kbGVhcm4vbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxiL2hvbWUvbGxpZmVib2EvYW5hY29uZGEzL2VudnMvZGxlYXJuL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9sbGlmZWJvYS9hbmFjb25kYTMvZW52cy9kbGVhcm4vbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+RXmO4jCMOoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-debian-bookworm-sid # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.7.16", "Stable-Baselines3": "2.0.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.21.5", "Cloudpickle": "1.6.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.19.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96e8f1795cb093dfccf20a69e2884a337b8a1dc9c4c3619f767b036d63c79a40
|
3 |
+
size 661055
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6996b17830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6996b178c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6996b17950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6996b179e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6996b17a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6996b17b00>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6996b17b90>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6996b17c20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6996b17cb0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6996b17d40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6996b17dd0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6996b17e60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f6996b63990>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
"net_arch": {
|
25 |
+
"pi": [
|
26 |
+
128,
|
27 |
+
128
|
28 |
+
],
|
29 |
+
"vf": [
|
30 |
+
128,
|
31 |
+
128,
|
32 |
+
128
|
33 |
+
]
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"num_timesteps": 8912896,
|
37 |
+
"_total_timesteps": 50000000,
|
38 |
+
"_num_timesteps_at_start": 0,
|
39 |
+
"seed": 0,
|
40 |
+
"action_noise": null,
|
41 |
+
"start_time": 1689029026618082254,
|
42 |
+
"learning_rate": 1e-08,
|
43 |
+
"tensorboard_log": null,
|
44 |
+
"_last_obs": null,
|
45 |
+
"_last_episode_starts": {
|
46 |
+
":type:": "<class 'numpy.ndarray'>",
|
47 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
48 |
+
},
|
49 |
+
"_last_original_obs": null,
|
50 |
+
"_episode_num": 0,
|
51 |
+
"use_sde": false,
|
52 |
+
"sde_sample_freq": -1,
|
53 |
+
"_current_progress_remaining": 0.82174208,
|
54 |
+
"_stats_window_size": 100,
|
55 |
+
"ep_info_buffer": {
|
56 |
+
":type:": "<class 'collections.deque'>",
|
57 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCgN3jdYXCMAWyUS66MAXSUR0CziT4na37UdX2UKGgGR0Bzimee4Cp4aAdLqmgIR0CziUIB3iaRdX2UKGgGR0Bym5KVY6n0aAdLwWgIR0CziWGbsniOdX2UKGgGR0BzCcvnKW9laAdLnmgIR0CziWJr+HafdX2UKGgGR0ByLG7L+xW1aAdLkGgIR0CziWXeBQN1dX2UKGgGR0ByIQLRa5f/aAdLyWgIR0CziXotg8bJdX2UKGgGR0Bxc9pQDV6NaAdLtmgIR0CziXuJHiFTdX2UKGgGR0Bwg+FoL5RCaAdLnWgIR0CziXwVoHs1dX2UKGgGR0ByBT5/LDAKaAdLxGgIR0CziX3LNfPYdX2UKGgGR0Bvv0+1SflIaAdLn2gIR0CziYKVY6n0dX2UKGgGR0ByDW9FnZkDaAdLwGgIR0CziYoVM23sdX2UKGgGR0BxjL2nKnvVaAdLimgIR0CziaIS13MZdX2UKGgGR0BxtEytV7x/aAdL5WgIR0Czialy/9HddX2UKGgGR0BxqmUSqU/waAdLtmgIR0Cziaq5TZQIdX2UKGgGR0BylST+vQnhaAdLumgIR0CzibWce8wpdX2UKGgGR0BygBJlJ6IFaAdLj2gIR0CzibWK2rn1dX2UKGgGR0BzdKbtqpLmaAdLw2gIR0Czib61w5vMdX2UKGgGR0BwvpVfeDWcaAdLomgIR0CziegfMfRvdX2UKGgGR0Bw1RSOzY29aAdLqmgIR0CzifAZjx0/dX2UKGgGR0BydEPAfuCxaAdL0mgIR0CzifJQP7N0dX2UKGgGR0B0pwJVsDW9aAdLqWgIR0CzifK42CNCdX2UKGgGR0BygxkpZwGXaAdLlGgIR0CzifaMFUyYdX2UKGgGR0BySBEE1VHXaAdLomgIR0CzigLg0j1PdX2UKGgGR0BxMeoJiRW+aAdLpmgIR0CzigSIk7fYdX2UKGgGR0ByN0PRRdhRaAdLoWgIR0CzihEZJkGzdX2UKGgGR0BwAXDhtLteaAdLk2gIR0Czih83IdU9dX2UKGgGR0Byi63I+4b0aAdLwGgIR0CziiMr/bTMdX2UKGgGR0Bxcv9xZMcqaAdL02gIR0Czii35zo2XdX2UKGgGR0BuRTyvs7dSaAdLrWgIR0Czijxzq8lHdX2UKGgGR0BxVvFERaouaAdLvGgIR0CzilYf8uSPdX2UKGgGR0BykkTWXkYGaAdLvmgIR0CzilfpljEvdX2UKGgGR0BzM9RJmNBGaAdLxmgIR0CzimeRPoFFdX2UKGgGR0Bzy5FWn0kGaAdL32gIR0CzimiDAaegdX2UKGgGR0BysKP/7zkIaAdLoWgIR0CzinEyHmA9dX2UKGgGR0BwzlBX0XgtaAdLlmgIR0CzinHIU8FIdX2UKGgGR0BMzejmCAc1aAdLV2gIR0CzioXdsSCfdX2UKGgGR0ByE0GRmseXaAdLtmgIR0Cziov3WWhRdX2UKGgGR0BxN9oxpL26aAdLuWgIR0CzioxvegtfdX2UKGgGR0Bx4KRaHKwIaAdLtWgIR0Czio81wYLtdX2UKGgGR0BxptJBgNPQaAdLr2gIR0CzipXxFy7xdX2UKGgGR0BxHoYJmdy1aAdLumgIR0CziqB5HEuQdX2UKGgGR0BxMitdRiw0aAdLrGgIR0CziqGe+VTrdX2UKGgGR0BwLYbBGhEjaAdLkWgIR0Cziqb0rbxmdX2UKGgGR0Bx93rfLs8gaAdLtWgIR0Czirn5WRzSdX2UKGgGR0BxdQxoIv8JaAdLwGgIR0Czir90/4ZddX2UKGgGR0Bw1MHObAk+aAdLnmgIR0Czitsi0OVgdX2UKGgGR0BwAFYmsvIwaAdLnmgIR0Cziu2x2SuAdX2UKGgGR0ByHlzHS4OMaAdLuWgIR0CzivIz3yqddX2UKGgGR0ByDCROk+HKaAdLomgIR0CzivslolD4dX2UKGgGR0BEu25QP7N0aAdLUWgIR0CziwGMS9M9dX2UKGgGR0BycbM0P6KtaAdLt2gIR0CziwLayrxRdX2UKGgGR0BxOyJSBK+SaAdLjWgIR0Cziw7Pt2LYdX2UKGgGR0BzCOb7TDwZaAdLmGgIR0CzixDL0SRKdX2UKGgGR0BxwknlXA/LaAdLpGgIR0Czixg0TDfndX2UKGgGR0BxpVlnRLK3aAdLyWgIR0CzixvcFhXsdX2UKGgGR0BwQIAWBSUDaAdLvGgIR0CziyWvB7/odX2UKGgGR0Bxrff8/D+BaAdLsWgIR0CzizjUNKAbdX2UKGgGR0ByUIwco6S1aAdL0mgIR0Cziz47zTWodX2UKGgGR0BzRRJCjUNKaAdLxGgIR0Czi0fx6OYIdX2UKGgGR0Bx54BaLXMAaAdLwmgIR0Czi00jLSuydX2UKGgGR0BxfZ+UhV2iaAdLv2gIR0Czi2QS8J2MdX2UKGgGR0Bzk4HNX5nEaAdLnWgIR0Czi3O7QLNOdX2UKGgGR0BxRLdqL0jDaAdLj2gIR0Czi3slb/wRdX2UKGgGR0ByJcSIxgy/aAdLo2gIR0Czi4a8xsVMdX2UKGgGR0Bw+WGFi8WcaAdLsmgIR0Czi4shkiD/dX2UKGgGR0Bygp9ZzPrwaAdLz2gIR0Czi45jDsMRdX2UKGgGR0Bv2Z+BpYcOaAdLnWgIR0Czi5V18stkdX2UKGgGR0A2Isyi22G7aAdLYGgIR0Czi5uW4Vh1dX2UKGgGR0ByDz0voNd7aAdLzGgIR0Czi7HPiT+vdX2UKGgGR0BxkskJKJ2uaAdLrWgIR0Czi7s8kleGdX2UKGgGR0Bx+qnwXqJNaAdLyGgIR0Czi71qN6w/dX2UKGgGR0BzcC9du5z6aAdLwGgIR0Czi74nv2GqdX2UKGgGR0Bzmh5v99+gaAdLxmgIR0Czi8bJfYz0dX2UKGgGR0BwZvAEdNnHaAdLq2gIR0Czi81poK2KdX2UKGgGR0ByH694/u9faAdLhGgIR0Czi9cMI/qxdX2UKGgGR0A4NJrcj7hvaAdLZWgIR0Czi+Xyd4FBdX2UKGgGR0BzP3WjGkvcaAdLyWgIR0Czi+1cdHUddX2UKGgGR0By+M4ZMtbtaAdLo2gIR0CzjALxI8QqdX2UKGgGR0BzrlNlAeJYaAdL12gIR0CzjAmOIZZTdX2UKGgGR0BwyLIn0CiiaAdLqGgIR0CzjBrEpAlfdX2UKGgGR0BwQf+3pfQbaAdLmGgIR0CzjBvIfbKzdX2UKGgGR0ByD970Fr2yaAdLwWgIR0CzjCWkvboKdX2UKGgGR0BwhRZV4oqkaAdLoGgIR0CzjEEI9kjHdX2UKGgGR0Bw1WrPt2LYaAdLlGgIR0CzjEJgG8mKdX2UKGgGR0BzBqMS9M9KaAdLwWgIR0CzjEfSlWOqdX2UKGgGR0Bxm5EH+qBFaAdLkmgIR0CzjFFOfukUdX2UKGgGR0Bzh5NGmUGFaAdL4mgIR0CzjFSWAwwkdX2UKGgGR0ByT7ThHbypaAdLsGgIR0CzjFq5Xlr/dX2UKGgGR0BziS8vmHQAaAdLtWgIR0CzjF0SM98rdX2UKGgGR0BxyJiy6cy4aAdLkmgIR0CzjGenyd4FdX2UKGgGR0ByrL70nPVvaAdLq2gIR0CzjG4gaFVUdX2UKGgGR0Bx8HsQd0aIaAdLnGgIR0CzjHXN5dGBdX2UKGgGR0By0jOKO1fFaAdLz2gIR0CzjHrfUF0QdX2UKGgGR0ByMULpiZv2aAdLpGgIR0CzjI4Ajps5dX2UKGgGR0Bxp0x20Re1aAdLoWgIR0CzjJFMEidKdX2UKGgGR0ByfLkn1FpgaAdLfGgIR0CzjKZjMFEBdX2UKGgGR0BwCDIU8FINaAdLqGgIR0CzjKglF+d9dX2UKGgGR0BzbYTewcHXaAdLrWgIR0CzjKs5jpcHdX2UKGgGR0BylVIxxkupaAdLimgIR0CzjLcv/R3NdX2UKGgGR0BwPE482aUiaAdLk2gIR0CzjLjsyBTXdWUu"
|
58 |
+
},
|
59 |
+
"ep_success_buffer": {
|
60 |
+
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
62 |
+
},
|
63 |
+
"_n_updates": 3940,
|
64 |
+
"observation_space": {
|
65 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
66 |
+
":serialized:": "gASVlAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsIhZRoGolDCAEBAQEBAQEBlHSUYowGX3NoYXBllEsIhZSMA2xvd5RoEGgSSwCFlGgUh5RSlChLAUsIhZRoColDIAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsIhZRoColDIAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lHSUYowIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
67 |
+
"dtype": "float32",
|
68 |
+
"bounded_below": "[ True True True True True True True True]",
|
69 |
+
"bounded_above": "[ True True True True True True True True]",
|
70 |
+
"_shape": [
|
71 |
+
8
|
72 |
+
],
|
73 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
74 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
75 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
76 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"action_space": {
|
80 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
81 |
+
":serialized:": "gASVnwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCeKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
82 |
+
"n": "4",
|
83 |
+
"start": "0",
|
84 |
+
"_shape": [],
|
85 |
+
"dtype": "int64",
|
86 |
+
"_np_random": "Generator(PCG64)"
|
87 |
+
},
|
88 |
+
"n_envs": 16,
|
89 |
+
"n_steps": 2048,
|
90 |
+
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.95,
|
92 |
+
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.5,
|
94 |
+
"max_grad_norm": 0.5,
|
95 |
+
"batch_size": 64,
|
96 |
+
"n_epochs": 4,
|
97 |
+
"clip_range": {
|
98 |
+
":type:": "<class 'function'>",
|
99 |
+
":serialized:": "gASV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxiL2hvbWUvbGxpZmVib2EvYW5hY29uZGEzL2VudnMvZGxlYXJuL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9sbGlmZWJvYS9hbmFjb25kYTMvZW52cy9kbGVhcm4vbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
100 |
+
},
|
101 |
+
"clip_range_vf": null,
|
102 |
+
"normalize_advantage": true,
|
103 |
+
"target_kl": null,
|
104 |
+
"lr_schedule": {
|
105 |
+
":type:": "<class 'function'>",
|
106 |
+
":serialized:": "gASV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxiL2hvbWUvbGxpZmVib2EvYW5hY29uZGEzL2VudnMvZGxlYXJuL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGIvaG9tZS9sbGlmZWJvYS9hbmFjb25kYTMvZW52cy9kbGVhcm4vbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+RXmO4jCMOoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
107 |
+
}
|
108 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0acaef247d8bd9dc33161d19d853cf34708b793f2511abe8a40924db76e059d2
|
3 |
+
size 431207
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:349a2878caee659fbfa2b203ed6fa13c5f8bbb466fbb9bf75d4abbf39f90e671
|
3 |
+
size 214715
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-debian-bookworm-sid # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.7.16
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.5
|
7 |
+
- Cloudpickle: 1.6.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.19.0
|
replay.mp4
ADDED
File without changes
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 290.70885389370665, "std_reward": 18.158613814410263, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-11T06:04:58.191035"}
|