File size: 12,404 Bytes
a664a45
 
1e50af8
a664a45
1e50af8
a664a45
1e50af8
 
 
a664a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e50af8
a664a45
 
 
 
1e50af8
a664a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e50af8
a664a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e50af8
 
 
 
 
a664a45
 
 
 
 
 
 
 
 
 
 
 
 
1e50af8
 
 
 
a664a45
 
 
 
 
 
 
 
 
 
 
 
1e50af8
 
 
 
 
a664a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e50af8
 
 
 
 
a664a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e50af8
 
 
 
a664a45
 
 
 
 
 
 
 
 
 
 
 
 
 
1e50af8
a664a45
 
 
 
 
1e50af8
a664a45
 
 
 
 
 
 
 
 
1e50af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a664a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin

from networks import UnetGenerator, PatchGAN

class Pix2Pix(
    nn.Module,
    PyTorchModelHubMixin):
    """Create a Pix2Pix class. It is a model for image to image translation tasks.
    By default, the model uses a Unet architecture for generator with transposed
    convolution. The discriminator is 70x70 PatchGAN discriminator, by default.
     """
    def __init__(self, 
                 c_in: int = 3, 
                 c_out: int = 3, 
                 is_train: bool = True,
                 netD: str = 'patch',
                 lambda_L1: float = 100.0,
                 is_CGAN: bool = True,
                 use_upsampling: bool = False,
                 mode: str = 'nearest',
                 c_hid: int = 64,
                 n_layers: int = 3,
                 lr: float = 0.0002,
                 beta1: float = 0.5,
                 beta2: float = 0.999
                 ):
        """Constructs the Pix2Pix class.
        
        Args:
            c_in: Number of input channels
            c_out: Number of output channels
            is_train: Whether the model is in training mode
            netD: Type of discriminator ('patch' or 'pixel')
            lambda_L1: Weight for L1 loss
            is_CGAN: If True, use conditional GAN architecture
            use_upsampling: If True, use upsampling in generator instead of transpose conv
            mode: Upsampling mode ('nearest', 'bilinear', 'bicubic')
            c_hid: Number of base filters in discriminator
            n_layers: Number of layers in discriminator
            lr: Learning rate
            beta1: Beta1 parameter for Adam optimizer
            beta2: Beta2 parameter for Adam optimizer
        """
        super(Pix2Pix, self).__init__()
        self.is_CGAN = is_CGAN
        self.lambda_L1 = lambda_L1
        self.is_train = is_train

        self.gen = UnetGenerator(c_in=c_in, c_out=c_out, use_upsampling=use_upsampling, mode=mode)
        self.gen = self.gen.apply(self.weights_init)
        
        if self.is_train:
            # Conditional GANs need both input and output together, the total input channel is c_in+c_out
            disc_in = c_in + c_out if is_CGAN else c_out
            self.disc = PatchGAN(c_in=disc_in, c_hid=c_hid, mode=netD, n_layers=n_layers) 
            self.disc = self.disc.apply(self.weights_init)

            # Initialize optimizers
            self.gen_optimizer = torch.optim.Adam(
                self.gen.parameters(), lr=lr, betas=(beta1, beta2))
            self.disc_optimizer = torch.optim.Adam(
                self.disc.parameters(), lr=lr, betas=(beta1, beta2))

            # Initialize loss functions
            self.criterion = nn.BCEWithLogitsLoss()
            self.criterion_L1 = nn.L1Loss()
    
    def forward(self, x: torch.Tensor):
        return self.gen(x)
    
    @staticmethod    
    def weights_init(m):
        """Initialize network weights.
        
        Args:
            m: network module
        """
        if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
            nn.init.normal_(m.weight, 0.0, 0.02)
            if hasattr(m, 'bias') and m.bias is not None:
                nn.init.constant_(m.bias, 0.0)
        if isinstance(m, nn.BatchNorm2d):
            nn.init.normal_(m.weight, 1.0, 0.02)
            nn.init.constant_(m.bias, 0)

    def _get_disc_inputs(self, 
                         real_images: torch.Tensor,
                         target_images: torch.Tensor, 
                         fake_images: torch.Tensor
                         ):
        """Prepare discriminator inputs based on conditional/unconditional setup."""
        if self.is_CGAN:
            # Conditional GANs need both input and output together, 
            # Therefore, the total input channel is c_in+c_out
            real_AB = torch.cat([real_images, target_images], dim=1)
            fake_AB = torch.cat([real_images, 
                               fake_images.detach()], 
                               dim=1)
        else:
            real_AB = target_images
            fake_AB = fake_images.detach()
        return real_AB, fake_AB
    
    def _get_gen_inputs(self, 
                        real_images: torch.Tensor, 
                        fake_images: torch.Tensor
                        ):
        """Prepare discriminator inputs based on conditional/unconditional setup."""
        if self.is_CGAN:
            # Conditional GANs need both input and output together, 
            # Therefore, the total input channel is c_in+c_out
            fake_AB = torch.cat([real_images, 
                               fake_images], 
                               dim=1)
        else:
            fake_AB = fake_images
        return fake_AB
    
    
    def step_discriminator(self, 
                           real_images: torch.Tensor, 
                           target_images: torch.Tensor, 
                           fake_images: torch.Tensor
                           ):
        """Discriminator forward/backward pass.
        
        Args:
            real_images: Input images
            target_images: Ground truth images
            fake_images: Generated images
            
        Returns:
            Discriminator loss value
        """
        # Prepare inputs
        real_AB, fake_AB = self._get_disc_inputs(real_images, target_images, 
                                                fake_images)
          
        # Forward pass through the discriminator
        pred_real = self.disc(real_AB) # D(x, y)
        pred_fake = self.disc(fake_AB) # D(x, G(x))

        # Compute the losses
        lossD_real = self.criterion(pred_real, torch.ones_like(pred_real)) # (D(x, y), 1)
        lossD_fake = self.criterion(pred_fake, torch.zeros_like(pred_fake)) # (D(x, y), 0)
        lossD = (lossD_real + lossD_fake) * 0.5 # Combined Loss
        return lossD
    
    def step_generator(self, 
                       real_images: torch.Tensor, 
                       target_images: torch.Tensor, 
                       fake_images: torch.Tensor
                       ):
        """Discriminator forward/backward pass.
        
        Args:
            real_images: Input images
            target_images: Ground truth images
            fake_images: Generated images
            
        Returns:
            Discriminator loss value
        """
        # Prepare input
        fake_AB = self._get_gen_inputs(real_images, fake_images)
          
        # Forward pass through the discriminator
        pred_fake = self.disc(fake_AB)

        # Compute the losses
        lossG_GaN = self.criterion(pred_fake, torch.ones_like(pred_fake)) # GAN Loss
        lossG_L1 = self.criterion_L1(fake_images, target_images)           # L1 Loss
        lossG = lossG_GaN + self.lambda_L1 * lossG_L1                      # Combined Loss
        # Return total loss and individual components
        return lossG, {
            'loss_G': lossG.item(),
            'loss_G_GAN': lossG_GaN.item(),
            'loss_G_L1': lossG_L1.item()
        }
    
    def train_step(self, 
                   real_images: torch.Tensor, 
                   target_images: torch.Tensor
                   ):
        """Performs a single training step.
        
        Args:
            real_images: Input images
            target_images: Ground truth images
            
        Returns:
            Dictionary containing all loss values from this step
        """
        # Forward pass through the generator
        fake_images = self.forward(real_images)
        
        # Update discriminator
        self.disc_optimizer.zero_grad() # Reset the gradients for D
        lossD = self.step_discriminator(real_images, target_images, fake_images) # Compute the loss
        lossD.backward()
        self.disc_optimizer.step() # Update D

        # Update generator
        self.gen_optimizer.zero_grad() # Reset the gradients for D
        lossG, G_losses = self.step_generator(real_images, target_images, fake_images) # Compute the loss
        lossG.backward()
        self.gen_optimizer.step() # Update D

        # Return all losses
        return {
            'loss_D': lossD.item(),
            **G_losses
        }
    
    def validation_step(self, 
                   real_images: torch.Tensor, 
                   target_images: torch.Tensor
                   ):
        """Performs a single validation step.
        
        Args:
            real_images: Input images
            target_images: Ground truth images
            
        Returns:
            Dictionary containing all loss values from this step
        """
        with torch.no_grad():
            # Forward pass through the generator
            fake_images = self.forward(real_images)

            # Compute the loss for D
            lossD = self.step_discriminator(real_images, target_images, fake_images)
            
            # Compute the loss for G
            _, G_losses = self.step_generator(real_images, target_images, fake_images)

        # Return all losses
        return {
            'loss_D': lossD.item(),
            **G_losses
        }
    
    def generate(self, 
                 real_images: torch.Tensor, 
                 is_scaled: bool = False, 
                 to_uint8: bool = False
                 ):
        if not is_scaled:
            real_images = real_images.to(dtype=torch.float32) # Make sure it's a float tensor
            real_images = real_images / 255.0 # Normalize to [0, 1]
        real_images = (real_images - 0.5) / 0.5 # Scale to [-1, 1]

        with torch.no_grad(): # generate image
            generated_images = self.forward(real_images)

        generated_images = (generated_images + 1) / 2  # Rescale to [0, 1]
        if to_uint8:
            generated_images = (generated_images* 255).to(dtype=torch.uint8)  # Scale to [0, 255] and convert to uint8
        
        return generated_images

            
    def save_model(self, gen_path: str, disc_path: str = None):
        """
        Saves the generator model's state dictionary to the specified path.
        If in training mode and a discriminator path is provided, saves the
        discriminator model's state dictionary as well.

        Args:
            gen_path (str): The file path where the generator model's state dictionary will be saved.
            disc_path (str, optional): The file path where the discriminator model's state dictionary will be saved. Defaults to None.
        """
        torch.save(self.gen.state_dict(), gen_path)
        if self.is_train and disc_path is not None:
            torch.save(self.disc.state_dict(), disc_path)
    
    def load_model(self, gen_path: str, disc_path: str = None, device: str = None):
        """
        Loads the generator and optionally the discriminator model from the specified file paths.

        Args:
            gen_path (str): Path to the generator model file.
            disc_path (str, optional): Path to the discriminator model file. Defaults to None.
            device (torch.device, optional): The device on which to load the models. If None, the device of the model's parameters will be used. Defaults to None.

        Returns:
            None
        """
        device = device if device else next(self.gen.parameters()).device
        self.gen.load_state_dict(torch.load(gen_path, map_location=device, weights_only=True), strict=False)
        if disc_path is not None and self.is_train:
            device = device if device else next(self.disc.parameters()).device
            self.disc.load_state_dict(torch.load(gen_path, map_location=device, weights_only=True), strict=False)
    
    def get_current_visuals(self, 
                            real_images: torch.Tensor, 
                            target_images: torch.Tensor
                            ):
        """Return visualization images.
        
        Args:
            real_images: Input images
            target_images: Ground truth images
            
        Returns:
            Dictionary containing input, target and generated images
        """
        with torch.no_grad():
            fake_images = self.gen(real_images)
        return {
            'real': real_images,
            'fake': fake_images,
            'target': target_images
        }