yuxi-liu-wired
commited on
Commit
•
1b1d8c3
1
Parent(s):
e435be0
example usage
Browse files- .gitignore +3 -0
- examples/example.ipynb +285 -0
- examples/tsne_visualization.py +217 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
**.parquet
|
2 |
+
**.json
|
3 |
+
.ipynb_checkpoints
|
examples/example.ipynb
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
+
"id": "32b7d029-64ce-4361-acde-dc72d67637b7",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"import copy\n",
|
13 |
+
"import os\n",
|
14 |
+
"import io\n",
|
15 |
+
"import torch\n",
|
16 |
+
"import torch.nn as nn\n",
|
17 |
+
"import clip\n",
|
18 |
+
"import pandas as pd\n",
|
19 |
+
"from PIL import Image\n",
|
20 |
+
"from tqdm import tqdm\n",
|
21 |
+
"import numpy as np\n",
|
22 |
+
"from transformers import Pipeline, CLIPProcessor, CLIPVisionModel\n",
|
23 |
+
"from huggingface_hub import PyTorchModelHubMixin\n",
|
24 |
+
"from typing import List, Union\n",
|
25 |
+
"from transformers import PretrainedConfig\n",
|
26 |
+
"import json\n",
|
27 |
+
"import safetensors\n",
|
28 |
+
"\n",
|
29 |
+
"class CSDCLIPConfig(PretrainedConfig):\n",
|
30 |
+
" model_type = \"csd_clip\"\n",
|
31 |
+
"\n",
|
32 |
+
" def __init__(\n",
|
33 |
+
" self,\n",
|
34 |
+
" name=\"csd_large\",\n",
|
35 |
+
" embedding_dim=1024,\n",
|
36 |
+
" feature_dim=1024,\n",
|
37 |
+
" content_dim=768,\n",
|
38 |
+
" style_dim=768,\n",
|
39 |
+
" content_proj_head=\"default\",\n",
|
40 |
+
" **kwargs\n",
|
41 |
+
" ):\n",
|
42 |
+
" super().__init__(**kwargs)\n",
|
43 |
+
" self.name = name\n",
|
44 |
+
" self.embedding_dim = embedding_dim\n",
|
45 |
+
" self.content_proj_head = content_proj_head\n",
|
46 |
+
" self.task_specific_params = None # Add this line\n",
|
47 |
+
"\n",
|
48 |
+
"class CSD_CLIP(nn.Module, PyTorchModelHubMixin):\n",
|
49 |
+
" \"\"\"backbone + projection head\"\"\"\n",
|
50 |
+
" def __init__(self, name='vit_large',content_proj_head='default'):\n",
|
51 |
+
" super(CSD_CLIP, self).__init__()\n",
|
52 |
+
" self.content_proj_head = content_proj_head\n",
|
53 |
+
" if name == 'vit_large':\n",
|
54 |
+
" clipmodel, _ = clip.load(\"ViT-L/14\")\n",
|
55 |
+
" self.backbone = clipmodel.visual\n",
|
56 |
+
" self.embedding_dim = 1024\n",
|
57 |
+
" self.feature_dim = 1024\n",
|
58 |
+
" self.content_dim = 768\n",
|
59 |
+
" self.style_dim = 768\n",
|
60 |
+
" self.name = \"csd_large\"\n",
|
61 |
+
" elif name == 'vit_base':\n",
|
62 |
+
" clipmodel, _ = clip.load(\"ViT-B/16\")\n",
|
63 |
+
" self.backbone = clipmodel.visual\n",
|
64 |
+
" self.embedding_dim = 768 \n",
|
65 |
+
" self.feature_dim = 512\n",
|
66 |
+
" self.content_dim = 512\n",
|
67 |
+
" self.style_dim = 512\n",
|
68 |
+
" self.name = \"csd_base\"\n",
|
69 |
+
" else:\n",
|
70 |
+
" raise Exception('This model is not implemented')\n",
|
71 |
+
"\n",
|
72 |
+
" self.last_layer_style = copy.deepcopy(self.backbone.proj)\n",
|
73 |
+
" self.last_layer_content = copy.deepcopy(self.backbone.proj)\n",
|
74 |
+
"\n",
|
75 |
+
" self.backbone.proj = None\n",
|
76 |
+
" \n",
|
77 |
+
" self.config = CSDCLIPConfig(\n",
|
78 |
+
" name=self.name,\n",
|
79 |
+
" embedding_dim=self.embedding_dim,\n",
|
80 |
+
" feature_dim=self.feature_dim,\n",
|
81 |
+
" content_dim=self.content_dim,\n",
|
82 |
+
" style_dim=self.style_dim,\n",
|
83 |
+
" content_proj_head=self.content_proj_head\n",
|
84 |
+
" )\n",
|
85 |
+
"\n",
|
86 |
+
" def get_config(self):\n",
|
87 |
+
" return self.config.to_dict()\n",
|
88 |
+
"\n",
|
89 |
+
" @property\n",
|
90 |
+
" def dtype(self):\n",
|
91 |
+
" return self.backbone.conv1.weight.dtype\n",
|
92 |
+
" \n",
|
93 |
+
" @property\n",
|
94 |
+
" def device(self):\n",
|
95 |
+
" return next(self.parameters()).device\n",
|
96 |
+
"\n",
|
97 |
+
" def forward(self, input_data):\n",
|
98 |
+
" \n",
|
99 |
+
" feature = self.backbone(input_data)\n",
|
100 |
+
"\n",
|
101 |
+
" style_output = feature @ self.last_layer_style\n",
|
102 |
+
" style_output = nn.functional.normalize(style_output, dim=1, p=2)\n",
|
103 |
+
"\n",
|
104 |
+
" content_output = feature @ self.last_layer_content\n",
|
105 |
+
" content_output = nn.functional.normalize(content_output, dim=1, p=2)\n",
|
106 |
+
" \n",
|
107 |
+
" return feature, content_output, style_output\n",
|
108 |
+
"\n",
|
109 |
+
"device = 'cuda'\n",
|
110 |
+
"model = CSD_CLIP.from_pretrained(\"yuxi-liu-wired/CSD\")\n",
|
111 |
+
"model.to(device);"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": null,
|
117 |
+
"id": "bbd750f6-fde9-48ed-a7d8-42ee5d31429d",
|
118 |
+
"metadata": {
|
119 |
+
"tags": []
|
120 |
+
},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"import torch\n",
|
124 |
+
"from transformers import Pipeline\n",
|
125 |
+
"from typing import Union, List\n",
|
126 |
+
"from PIL import Image\n",
|
127 |
+
"\n",
|
128 |
+
"class CSDCLIPPipeline(Pipeline):\n",
|
129 |
+
" def __init__(self, model, processor, device=None):\n",
|
130 |
+
" if device is None:\n",
|
131 |
+
" device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
132 |
+
" super().__init__(model=model, tokenizer=None, device=device)\n",
|
133 |
+
" self.processor = processor\n",
|
134 |
+
"\n",
|
135 |
+
" def _sanitize_parameters(self, **kwargs):\n",
|
136 |
+
" return {}, {}, {}\n",
|
137 |
+
"\n",
|
138 |
+
" def preprocess(self, images):\n",
|
139 |
+
" if isinstance(images, (str, Image.Image)):\n",
|
140 |
+
" images = [images]\n",
|
141 |
+
" \n",
|
142 |
+
" processed = self.processor(images=images, return_tensors=\"pt\", padding=True, truncation=True)\n",
|
143 |
+
" return {k: v.to(self.device) for k, v in processed.items()}\n",
|
144 |
+
"\n",
|
145 |
+
" def _forward(self, model_inputs):\n",
|
146 |
+
" pixel_values = model_inputs['pixel_values'].to(self.model.dtype)\n",
|
147 |
+
" with torch.no_grad():\n",
|
148 |
+
" features, content_output, style_output = self.model(pixel_values)\n",
|
149 |
+
" return {\"features\": features, \"content_output\": content_output, \"style_output\": style_output}\n",
|
150 |
+
"\n",
|
151 |
+
" def postprocess(self, model_outputs):\n",
|
152 |
+
" return {\n",
|
153 |
+
" \"features\": model_outputs[\"features\"].cpu().numpy(),\n",
|
154 |
+
" \"content_output\": model_outputs[\"content_output\"].cpu().numpy(),\n",
|
155 |
+
" \"style_output\": model_outputs[\"style_output\"].cpu().numpy()\n",
|
156 |
+
" }\n",
|
157 |
+
"\n",
|
158 |
+
" def __call__(self, images: Union[str, List[str], Image.Image, List[Image.Image]]):\n",
|
159 |
+
" return super().__call__(images)\n",
|
160 |
+
"\n",
|
161 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
162 |
+
"pipeline = CSDCLIPPipeline(model=model, processor=processor, device=device)"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"execution_count": 3,
|
168 |
+
"id": "4107999a-c48c-4cb4-9247-9836dfb27e98",
|
169 |
+
"metadata": {
|
170 |
+
"tags": []
|
171 |
+
},
|
172 |
+
"outputs": [
|
173 |
+
{
|
174 |
+
"name": "stderr",
|
175 |
+
"output_type": "stream",
|
176 |
+
"text": [
|
177 |
+
"Processing images: 100%|█████████████████████████████████████████████████████████████| 900/900 [01:09<00:00, 12.86it/s]\n"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"name": "stdout",
|
182 |
+
"output_type": "stream",
|
183 |
+
"text": [
|
184 |
+
"Processing complete. Results saved to 'processed_dataset.parquet'\n"
|
185 |
+
]
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"source": [
|
189 |
+
"import io\n",
|
190 |
+
"from PIL import Image\n",
|
191 |
+
"import requests\n",
|
192 |
+
"from datasets import load_dataset\n",
|
193 |
+
"import pandas as pd\n",
|
194 |
+
"import numpy as np\n",
|
195 |
+
"from tqdm import tqdm\n",
|
196 |
+
"\n",
|
197 |
+
"def to_jpeg(image):\n",
|
198 |
+
" buffered = io.BytesIO()\n",
|
199 |
+
" if image.mode not in (\"RGB\"):\n",
|
200 |
+
" image = image.convert(\"RGB\")\n",
|
201 |
+
" image.save(buffered, format='JPEG')\n",
|
202 |
+
" return buffered.getvalue() \n",
|
203 |
+
"\n",
|
204 |
+
"def scale_image(image, max_resolution):\n",
|
205 |
+
" if max(image.width, image.height) > max_resolution:\n",
|
206 |
+
" image = image.resize((max_resolution, int(image.height * max_resolution / image.width)))\n",
|
207 |
+
" return image\n",
|
208 |
+
"\n",
|
209 |
+
"def process_dataset(pipeline, dataset_name, dataset_size=900, max_resolution=192):\n",
|
210 |
+
" dataset = load_dataset(dataset_name, split='train')\n",
|
211 |
+
" dataset = dataset.select(range(dataset_size))\n",
|
212 |
+
" \n",
|
213 |
+
" # Print the column names\n",
|
214 |
+
" print(\"Dataset columns:\", dataset.column_names)\n",
|
215 |
+
" \n",
|
216 |
+
" # Initialize lists to store results\n",
|
217 |
+
" embeddings = []\n",
|
218 |
+
" jpeg_images = []\n",
|
219 |
+
" \n",
|
220 |
+
" # Process each item in the dataset\n",
|
221 |
+
" for item in tqdm(dataset, desc=\"Processing images\"):\n",
|
222 |
+
" try:\n",
|
223 |
+
" img = item['image']\n",
|
224 |
+
" \n",
|
225 |
+
" # If img is a string (file path), load the image\n",
|
226 |
+
" if isinstance(img, str):\n",
|
227 |
+
" img = Image.open(img)\n",
|
228 |
+
"\n",
|
229 |
+
"\n",
|
230 |
+
" output = pipeline(img)\n",
|
231 |
+
" style_output = output[\"style_output\"].squeeze(0)\n",
|
232 |
+
" \n",
|
233 |
+
" img = scale_image(img, max_resolution)\n",
|
234 |
+
" jpeg_img = to_jpeg(img)\n",
|
235 |
+
" \n",
|
236 |
+
" # Append results to lists\n",
|
237 |
+
" embeddings.append(style_output)\n",
|
238 |
+
" jpeg_images.append(jpeg_img)\n",
|
239 |
+
" except Exception as e:\n",
|
240 |
+
" print(f\"Error processing item: {e}\")\n",
|
241 |
+
" \n",
|
242 |
+
" # Create a DataFrame with the results\n",
|
243 |
+
" df = pd.DataFrame({\n",
|
244 |
+
" 'embedding': embeddings,\n",
|
245 |
+
" 'image': jpeg_images\n",
|
246 |
+
" })\n",
|
247 |
+
" \n",
|
248 |
+
" df.to_parquet('processed_dataset.parquet')\n",
|
249 |
+
" print(\"Processing complete. Results saved to 'processed_dataset.parquet'\")\n",
|
250 |
+
"\n",
|
251 |
+
"process_dataset(pipeline, \"yuxi-liu-wired/style-content-grid-SDXL\", \n",
|
252 |
+
" dataset_size=900, max_resolution=192)"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": null,
|
258 |
+
"id": "066ec067-edb1-4110-a0fe-8d7c97311790",
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [],
|
261 |
+
"source": []
|
262 |
+
}
|
263 |
+
],
|
264 |
+
"metadata": {
|
265 |
+
"kernelspec": {
|
266 |
+
"display_name": "Python [conda env:diffgan]",
|
267 |
+
"language": "python",
|
268 |
+
"name": "conda-env-diffgan-py"
|
269 |
+
},
|
270 |
+
"language_info": {
|
271 |
+
"codemirror_mode": {
|
272 |
+
"name": "ipython",
|
273 |
+
"version": 3
|
274 |
+
},
|
275 |
+
"file_extension": ".py",
|
276 |
+
"mimetype": "text/x-python",
|
277 |
+
"name": "python",
|
278 |
+
"nbconvert_exporter": "python",
|
279 |
+
"pygments_lexer": "ipython3",
|
280 |
+
"version": "3.10.14"
|
281 |
+
}
|
282 |
+
},
|
283 |
+
"nbformat": 4,
|
284 |
+
"nbformat_minor": 5
|
285 |
+
}
|
examples/tsne_visualization.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.manifold import TSNE
|
4 |
+
import json
|
5 |
+
import base64
|
6 |
+
|
7 |
+
def generate_tsne_embedding(input_file, output_file):
|
8 |
+
# Load the Parquet file
|
9 |
+
df = pd.read_parquet(input_file)
|
10 |
+
|
11 |
+
# Extract embeddings and convert to numpy array
|
12 |
+
embeddings = np.array(df['embedding'].tolist())
|
13 |
+
|
14 |
+
# Perform t-SNE
|
15 |
+
tsne = TSNE(n_components=2, random_state=42)
|
16 |
+
tsne_results = tsne.fit_transform(embeddings)
|
17 |
+
|
18 |
+
# Prepare output data
|
19 |
+
output_data = []
|
20 |
+
for i, (x, y) in enumerate(tsne_results):
|
21 |
+
image_base64 = base64.b64encode(df['image'][i]).decode('utf-8')
|
22 |
+
output_data.append({
|
23 |
+
'x': float(x),
|
24 |
+
'y': float(y),
|
25 |
+
'image': image_base64
|
26 |
+
})
|
27 |
+
|
28 |
+
# Save results to JSON file
|
29 |
+
with open(output_file, 'w') as f:
|
30 |
+
json.dump(output_data, f)
|
31 |
+
|
32 |
+
## ----------------------------
|
33 |
+
## Dash app
|
34 |
+
## ----------------------------
|
35 |
+
|
36 |
+
import os
|
37 |
+
import base64
|
38 |
+
import json
|
39 |
+
import numpy as np
|
40 |
+
from dash import dcc, html, Input, Output, no_update, Dash
|
41 |
+
import numpy as np
|
42 |
+
from sklearn.cluster import KMeans
|
43 |
+
from scipy.spatial.distance import cdist
|
44 |
+
import plotly.graph_objects as go
|
45 |
+
from PIL import Image
|
46 |
+
import random
|
47 |
+
import socket
|
48 |
+
|
49 |
+
def find_free_port():
|
50 |
+
while True:
|
51 |
+
port = random.randint(49152, 65535) # Use dynamic/private port range
|
52 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
53 |
+
try:
|
54 |
+
s.bind(('', port))
|
55 |
+
return port
|
56 |
+
except OSError:
|
57 |
+
pass
|
58 |
+
|
59 |
+
def create_dash_app(fig, images):
|
60 |
+
app = Dash(__name__)
|
61 |
+
|
62 |
+
app.layout = html.Div(
|
63 |
+
className="container",
|
64 |
+
children=[
|
65 |
+
dcc.Graph(id="graph", figure=fig, clear_on_unhover=True),
|
66 |
+
dcc.Tooltip(id="graph-tooltip", direction='bottom'),
|
67 |
+
],
|
68 |
+
)
|
69 |
+
|
70 |
+
@app.callback(
|
71 |
+
Output("graph-tooltip", "show"),
|
72 |
+
Output("graph-tooltip", "bbox"),
|
73 |
+
Output("graph-tooltip", "children"),
|
74 |
+
Input("graph", "hoverData"),
|
75 |
+
)
|
76 |
+
def display_hover(hoverData):
|
77 |
+
if hoverData is None:
|
78 |
+
return False, no_update, no_update
|
79 |
+
|
80 |
+
hover_data = hoverData["points"][0]
|
81 |
+
bbox = hover_data["bbox"]
|
82 |
+
num = hover_data["pointNumber"]
|
83 |
+
|
84 |
+
image_base64 = images[num]
|
85 |
+
children = [
|
86 |
+
html.Div([
|
87 |
+
html.Img(
|
88 |
+
src=f"data:image/jpeg;base64,{image_base64}",
|
89 |
+
style={"width": "200px",
|
90 |
+
"height": "200px",
|
91 |
+
'display': 'block', 'margin': '0 auto'},
|
92 |
+
),
|
93 |
+
])
|
94 |
+
]
|
95 |
+
|
96 |
+
return True, bbox, children
|
97 |
+
|
98 |
+
return app
|
99 |
+
|
100 |
+
def perform_kmeans(data, k=20):
|
101 |
+
# Extract x, y coordinates
|
102 |
+
coords = np.array([[point['x'], point['y']] for point in data])
|
103 |
+
|
104 |
+
# Perform k-means clustering
|
105 |
+
kmeans = KMeans(n_clusters=k, random_state=42)
|
106 |
+
kmeans.fit(coords)
|
107 |
+
|
108 |
+
return kmeans
|
109 |
+
|
110 |
+
def find_nearest_images(data, kmeans):
|
111 |
+
coords = np.array([[point['x'], point['y']] for point in data])
|
112 |
+
images = [point['image'] for point in data]
|
113 |
+
|
114 |
+
# Calculate distances to cluster centers
|
115 |
+
distances = cdist(coords, kmeans.cluster_centers_, metric='euclidean')
|
116 |
+
|
117 |
+
# Find the index of the nearest point for each cluster
|
118 |
+
nearest_indices = distances.argmin(axis=0)
|
119 |
+
|
120 |
+
# Get the images nearest to each cluster center
|
121 |
+
nearest_images = [images[i] for i in nearest_indices]
|
122 |
+
|
123 |
+
return nearest_images, kmeans.cluster_centers_
|
124 |
+
|
125 |
+
def create_dash_fig(data, kmeans_result, nearest_images, cluster_centers, title):
|
126 |
+
# Extract x, y coordinates
|
127 |
+
x = [point['x'] for point in data]
|
128 |
+
y = [point['y'] for point in data]
|
129 |
+
images = [point['image'] for point in data]
|
130 |
+
|
131 |
+
# Determine the range for both axes
|
132 |
+
max_range = max(max(x) - min(x), max(y) - min(y)) / 2
|
133 |
+
center_x = (max(x) + min(x)) / 2
|
134 |
+
center_y = (max(y) + min(y)) / 2
|
135 |
+
|
136 |
+
# Create the scatter plot
|
137 |
+
fig = go.Figure()
|
138 |
+
|
139 |
+
# Add data points
|
140 |
+
fig.add_trace(go.Scatter(
|
141 |
+
x=x,
|
142 |
+
y=y,
|
143 |
+
mode='markers',
|
144 |
+
marker=dict(
|
145 |
+
size=5,
|
146 |
+
color=kmeans_result.labels_,
|
147 |
+
colorscale='Viridis',
|
148 |
+
showscale=False
|
149 |
+
),
|
150 |
+
name='Data Points'
|
151 |
+
))
|
152 |
+
|
153 |
+
# Add cluster centers and images
|
154 |
+
|
155 |
+
fig.update_layout(
|
156 |
+
title=title,
|
157 |
+
width=1000, height=1000,
|
158 |
+
xaxis=dict(
|
159 |
+
range=[center_x - max_range, center_x + max_range],
|
160 |
+
scaleanchor="y",
|
161 |
+
scaleratio=1,
|
162 |
+
),
|
163 |
+
yaxis=dict(
|
164 |
+
range=[center_y - max_range, center_y + max_range],
|
165 |
+
),
|
166 |
+
showlegend=False,
|
167 |
+
)
|
168 |
+
|
169 |
+
fig.update_traces(
|
170 |
+
hoverinfo="none",
|
171 |
+
hovertemplate=None,
|
172 |
+
)
|
173 |
+
# Add images
|
174 |
+
for i, (cx, cy) in enumerate(cluster_centers):
|
175 |
+
fig.add_layout_image(
|
176 |
+
dict(
|
177 |
+
source=f"data:image/jpg;base64,{nearest_images[i]}",
|
178 |
+
x=cx,
|
179 |
+
y=cy,
|
180 |
+
xref="x",
|
181 |
+
yref="y",
|
182 |
+
sizex=10,
|
183 |
+
sizey=10,
|
184 |
+
sizing="contain",
|
185 |
+
opacity=1,
|
186 |
+
layer="below"
|
187 |
+
)
|
188 |
+
)
|
189 |
+
|
190 |
+
# Remove x and y axes ticks
|
191 |
+
fig.update_layout(xaxis=dict(visible=False), yaxis=dict(visible=False))
|
192 |
+
|
193 |
+
return fig, images
|
194 |
+
|
195 |
+
def make_dash_kmeans(data, title, k=40):
|
196 |
+
kmeans_result = perform_kmeans(data, k=k)
|
197 |
+
nearest_images, cluster_centers = find_nearest_images(data, kmeans_result)
|
198 |
+
fig, images = create_dash_fig(data, kmeans_result, nearest_images, cluster_centers, title)
|
199 |
+
app = create_dash_app(fig, images)
|
200 |
+
port = find_free_port()
|
201 |
+
print(f"Serving on http://127.0.0.1:{port}/")
|
202 |
+
print(f"To serve this over the Internet, run `ngrok http {port}`")
|
203 |
+
app.run_server(port=port)
|
204 |
+
return app
|
205 |
+
|
206 |
+
if __name__ == "__main__":
|
207 |
+
|
208 |
+
dataset_folder = os.path.dirname('./')
|
209 |
+
name = "style"
|
210 |
+
image_embedding_path = os.path.join(dataset_folder, f"processed_dataset.parquet")
|
211 |
+
tsne_path = os.path.join(dataset_folder, f"processed_dataset.json")
|
212 |
+
|
213 |
+
generate_tsne_embedding(image_embedding_path, tsne_path)
|
214 |
+
with open(tsne_path, "r") as f:
|
215 |
+
data = json.load(f)
|
216 |
+
|
217 |
+
make_dash_kmeans(data, name, k=40)
|