File size: 702 Bytes
a47f4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
import torch
from PIL import Image
import open_clip
model, _, preprocess = open_clip.create_model_and_transforms("hf-hub:yyupenn/whyxrayclip")
model.eval()
tokenizer = open_clip.get_tokenizer("ViT-L-14")
image = preprocess(Image.open("test_xray.jpg")).unsqueeze(0)
text = tokenizer(["enlarged heart", "pleural effusion"])
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs) |