chore: better accuracy
Browse files- compiled_model/client.zip +2 -2
- compiled_model/server.zip +1 -1
- creating_models.py +7 -1
compiled_model/client.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d39a9cede3a266cbf62cec33bf05fffe63c5bc11fbfe0781e0d49043ae133754
|
3 |
+
size 104292
|
compiled_model/server.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2687
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c876bee83abe4fc626d129544390568d9d05786f72ef19f3ff656499505e1494
|
3 |
size 2687
|
creating_models.py
CHANGED
@@ -11,7 +11,7 @@ def compile_and_make_it_deployable(model_dev, X_train):
|
|
11 |
path_to_model = Path("compiled_model")
|
12 |
|
13 |
# Compile into FHE
|
14 |
-
model_dev.compile(X_train, p_error=0.
|
15 |
|
16 |
# Saving the model
|
17 |
shutil.rmtree(path_to_model, ignore_errors=True)
|
@@ -27,6 +27,12 @@ def compile_and_make_it_deployable(model_dev, X_train):
|
|
27 |
|
28 |
print(f"Your keys will be {sys.getsizeof(evaluation_keys) / 1024 / 1024}-megabytes long")
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# This is the spam classifier. Taken from https://github.com/zama-ai/concrete-ml/blob/main/docs/advanced_examples/DecisionTreeClassifier.ipynb
|
32 |
import numpy
|
|
|
11 |
path_to_model = Path("compiled_model")
|
12 |
|
13 |
# Compile into FHE
|
14 |
+
model_dev.compile(X_train, p_error=0.01)
|
15 |
|
16 |
# Saving the model
|
17 |
shutil.rmtree(path_to_model, ignore_errors=True)
|
|
|
27 |
|
28 |
print(f"Your keys will be {sys.getsizeof(evaluation_keys) / 1024 / 1024}-megabytes long")
|
29 |
|
30 |
+
# Check accuracy with p_error
|
31 |
+
y_pred_concrete = model_dev.predict_proba(x_test, fhe="simulate")[:, 1]
|
32 |
+
concrete_average_precision = average_precision_score(y_test, y_pred_concrete)
|
33 |
+
|
34 |
+
print(f"Concrete average precision score (simulate): {concrete_average_precision:0.2f}")
|
35 |
+
|
36 |
|
37 |
# This is the spam classifier. Taken from https://github.com/zama-ai/concrete-ml/blob/main/docs/advanced_examples/DecisionTreeClassifier.ipynb
|
38 |
import numpy
|