File size: 1,998 Bytes
15ebebf 8609d76 15ebebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-tldr-50k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-tldr-50k
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the Reddit TL;DR dataset (https://zenodo.org/record/1168855#.ZB8P-iFByUk).
It achieves the following results on the evaluation set:
- Gen Len: 16.4422
- Loss: 3.2423
- Rouge1: 14.7049
- Rouge2: 3.2396
- Rougel: 12.5104
- Rougelsum: 12.9681
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 3.5507 | 1.0 | 5625 | 16.1424 | 3.2752 | 14.2302 | 2.9853 | 12.1734 | 12.5894 |
| 3.4842 | 2.0 | 11250 | 16.1126 | 3.2569 | 14.3966 | 3.0939 | 12.2437 | 12.6705 |
| 3.4288 | 3.0 | 16875 | 16.39 | 3.2481 | 14.6879 | 3.2647 | 12.5199 | 12.9681 |
| 3.4176 | 4.0 | 22500 | 16.2948 | 3.2432 | 14.7198 | 3.2693 | 12.5436 | 12.9885 |
| 3.4033 | 5.0 | 28125 | 16.4422 | 3.2423 | 14.7049 | 3.2396 | 12.5104 | 12.9681 |
### Framework versions
- Transformers 4.27.3
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
|