ppo-LunarLander-v2 / config.json
Sebastian Schreiber
Push LunarLander-v2 model
9ac5f68
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d6bfc41f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d6bfc4280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d6bfc4310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d6bfc43a0>", "_build": "<function ActorCriticPolicy._build at 0x7f3d6bfc4430>", "forward": "<function ActorCriticPolicy.forward at 0x7f3d6bfc44c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3d6bfc4550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d6bfc45e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3d6bfc4670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d6bfc4700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d6bfc4790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d6bfc4820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3d6bfbf870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677796499247675637, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBGKD3stas/bGasPsBQzr5lRY881v86PQAAAAAAAAAAZvU1vTbwNrz09Bk8Hp+jPAgXnb2S1YU9AACAPwAAgD/N5NS7/gnpPupdHD1lJcO+K4NLPaMFiz0AAAAAAAAAAGaZojzsU5O7HuKIO+0QszyXU928OCKXPQAAgD8AAIA/GkegPS4Trz3O+Ky+cXFuvv5wJb4Y/gC9AAAAAAAAAAAAKuG9v94/P/axEbyylPG+m/m1vWlls7sAAAAAAAAAAIDrIT1fZ9I8AFovPdUMTL5egcU7g0pOvAAAAAAAAAAAs/SIvVySQjveKVQ9TC9hvh7dxLumsKQ8AAAAAAAAAABzzvG9TPExPuWBWT5pPWi+WaVTPVFqCT0AAAAAAAAAAGb/uTznqcA/23gfPqCAJj40fNO7jj6LPQAAAAAAAAAAzR9yPa0jwD/hrcs+zJfmPUkB9Duaqtk9AAAAAAAAAACal1Y8hTGqu8q/KLyQFJI8A9EJvfBmdz0AAIA/AACAP2bm97m4ntS5fpE5th703jCdENy7dbJpNQAAgD8AAIA/ABm/PP8fHj/uohs82crGvpCY+DsSIoc8AAAAAAAAAADNQmi8eCv+PBzxE75+G3C+aPoivpDciD0AAAAAAAAAANMlVj4H9mY+8Nwxvlwpbr5a8Iu7vPwNPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0GOUZ15IcECUhpRSlIwBbJRNDQGMAXSUR0Ci7qXKSxJNdX2UKGgGaAloD0MI61T5ntEjcUCUhpRSlGgVTVQBaBZHQKLu4e2/i5x1fZQoaAZoCWgPQwj6X65FC3ByQJSGlFKUaBVNCgFoFkdAou9HgLqlg3V9lChoBmgJaA9DCBWrBmGuTHJAlIaUUpRoFUv8aBZHQKLvV7eEZix1fZQoaAZoCWgPQwh+xoUDodNvQJSGlFKUaBVL3GgWR0Ci72bWd3B6dX2UKGgGaAloD0MISg1tAPbdckCUhpRSlGgVS99oFkdAovATWd3B6HV9lChoBmgJaA9DCEbQmElU+nBAlIaUUpRoFU0EAWgWR0Ci8Nk4ecQRdX2UKGgGaAloD0MIVg4tsh3BbUCUhpRSlGgVTQsBaBZHQKLxIkj5bhZ1fZQoaAZoCWgPQwhqhlRRvGpxQJSGlFKUaBVL6mgWR0Ci8UzKs+3ZdX2UKGgGaAloD0MIE+6VeSuwbkCUhpRSlGgVTRsBaBZHQKLxlKuB+Wp1fZQoaAZoCWgPQwhmvRjKCRdwQJSGlFKUaBVL3mgWR0Ci8bPZRKpUdX2UKGgGaAloD0MIlUc3wqKGZkCUhpRSlGgVTegDaBZHQKLyw9Pk7wN1fZQoaAZoCWgPQwh/wW7YNt1wQJSGlFKUaBVNIgFoFkdAovLdHYpUgnV9lChoBmgJaA9DCGMOgo5W3HBAlIaUUpRoFU0JAWgWR0Ci8ucMd92HdX2UKGgGaAloD0MICoLHt3eUbkCUhpRSlGgVTSIBaBZHQKLzAnGbTc91fZQoaAZoCWgPQwj0Nctl4/JyQJSGlFKUaBVL8WgWR0Ci8wykj5bhdX2UKGgGaAloD0MIKej2kgaScECUhpRSlGgVTf4BaBZHQKLzEIKtxMp1fZQoaAZoCWgPQwiDNc6mo95vQJSGlFKUaBVNAQFoFkdAovNLi83+/HV9lChoBmgJaA9DCLd/ZaWJ3nBAlIaUUpRoFU03AWgWR0Ci89i6g/TtdX2UKGgGaAloD0MIo8haQ+n4cECUhpRSlGgVTQUBaBZHQKLz+6xxDLN1fZQoaAZoCWgPQwg2c0hqIQ1xQJSGlFKUaBVL/2gWR0Ci9Ine7+UAdX2UKGgGaAloD0MIb/YHym0Gb0CUhpRSlGgVS+9oFkdAovSOKyfL93V9lChoBmgJaA9DCPTDCOGR3nFAlIaUUpRoFUvyaBZHQKL09tGd7OV1fZQoaAZoCWgPQwjc9Gc/EnpxQJSGlFKUaBVL4WgWR0Ci9c+FL39KdX2UKGgGaAloD0MI0sWmlUKEcUCUhpRSlGgVTSYBaBZHQKL13ErGza91fZQoaAZoCWgPQwgLDcSyGaxvQJSGlFKUaBVL6WgWR0Ci9jOj7ALzdX2UKGgGaAloD0MI+x711yucR0CUhpRSlGgVS7hoFkdAovZ1RekYXXV9lChoBmgJaA9DCARXeQLh5G5AlIaUUpRoFU0HAWgWR0Ci9oPatcOcdX2UKGgGaAloD0MIU82spYChc0CUhpRSlGgVS/FoFkdAovanPcBU73V9lChoBmgJaA9DCIyhnGjXeHJAlIaUUpRoFU0NAWgWR0Ci9sfkmx+sdX2UKGgGaAloD0MI3JvfMBGfcUCUhpRSlGgVTRUBaBZHQKL22WE9Mbp1fZQoaAZoCWgPQwjEsplDUhBwQJSGlFKUaBVNLwFoFkdAovcQd8zAOHV9lChoBmgJaA9DCF02OucnzHFAlIaUUpRoFU2cAWgWR0Ci9zc3Mpw0dX2UKGgGaAloD0MIWRMLfMWBbUCUhpRSlGgVTRUBaBZHQKL32xO+IuZ1fZQoaAZoCWgPQwi5q1eRURFzQJSGlFKUaBVL8mgWR0Ci9/bOeJ53dX2UKGgGaAloD0MIRfZBlgXnbkCUhpRSlGgVTQsBaBZHQKL4RLq2SdR1fZQoaAZoCWgPQwjni70XX05VQJSGlFKUaBVLpWgWR0CjBMgxi5NHdX2UKGgGaAloD0MIuk24V2ZEcUCUhpRSlGgVTQ0BaBZHQKMEzH9WIXV1fZQoaAZoCWgPQwgGhNbDV1xyQJSGlFKUaBVL62gWR0CjBSf2K2rodX2UKGgGaAloD0MIQznRrkLDcUCUhpRSlGgVS+xoFkdAowV8d5prUXV9lChoBmgJaA9DCOsZwjFLHmJAlIaUUpRoFU3oA2gWR0CjBbbSZ0CBdX2UKGgGaAloD0MIvMraprhTcUCUhpRSlGgVTQYBaBZHQKMGGZE2Hcl1fZQoaAZoCWgPQwjvjozVplFwQJSGlFKUaBVNAwFoFkdAowY9dqtYCHV9lChoBmgJaA9DCLpNuFdmuHJAlIaUUpRoFU0aAWgWR0CjBsLn9vS/dX2UKGgGaAloD0MI29styUEgcUCUhpRSlGgVTV4BaBZHQKMGxaq0dBB1fZQoaAZoCWgPQwjiV6zh4pZxQJSGlFKUaBVNFgFoFkdAowbvxaxHG3V9lChoBmgJaA9DCK0VbY5zXHBAlIaUUpRoFU0NAWgWR0CjBvpRoAXEdX2UKGgGaAloD0MIgnAFFGocckCUhpRSlGgVTTsBaBZHQKMHKDvE0i11fZQoaAZoCWgPQwjGMv0ScT1vQJSGlFKUaBVL7GgWR0CjBzQF1SwXdX2UKGgGaAloD0MIFhiyupUTcECUhpRSlGgVS/5oFkdAowd/s7dSEXV9lChoBmgJaA9DCECJz51gqGJAlIaUUpRoFU3oA2gWR0CjCBHDrJKbdX2UKGgGaAloD0MIO99PjRf2ckCUhpRSlGgVTRUBaBZHQKMIHG9YfXB1fZQoaAZoCWgPQwhUbw1sFVRzQJSGlFKUaBVL7WgWR0CjCFtQTEiudX2UKGgGaAloD0MIL6hvmZOAcECUhpRSlGgVS/FoFkdAowi2J79hqnV9lChoBmgJaA9DCGYv205bzW9AlIaUUpRoFU02AWgWR0CjCPSBK+SKdX2UKGgGaAloD0MII7pnXeOyckCUhpRSlGgVTTkBaBZHQKMI+ws5GSZ1fZQoaAZoCWgPQwgSv2INlzNtQJSGlFKUaBVNAgFoFkdAowkezMRpUXV9lChoBmgJaA9DCFDHYwbqgXJAlIaUUpRoFUvdaBZHQKMJHYcNpdt1fZQoaAZoCWgPQwiiDivc8pFRQJSGlFKUaBVLs2gWR0CjCS+jdpIudX2UKGgGaAloD0MI19081WHucECUhpRSlGgVTQ8BaBZHQKMJjkkrwvx1fZQoaAZoCWgPQwj3r6w0qWVyQJSGlFKUaBVNCQFoFkdAowoCnYQJ5XV9lChoBmgJaA9DCOwy/KebRnJAlIaUUpRoFUvTaBZHQKMKESQHRkV1fZQoaAZoCWgPQwjkafmBK2VwQJSGlFKUaBVNAgFoFkdAowpDj1f3OHV9lChoBmgJaA9DCIhJuJAH4XJAlIaUUpRoFU08AWgWR0CjCtSlnAZbdX2UKGgGaAloD0MIQlpj0IkpcECUhpRSlGgVS/VoFkdAowsQ5zYEn3V9lChoBmgJaA9DCEpFY+1vwHFAlIaUUpRoFU1hAWgWR0CjCyI86mwadX2UKGgGaAloD0MICVIpdrRUcECUhpRSlGgVS+poFkdAowuf1FpfyHV9lChoBmgJaA9DCEccsoF0mnJAlIaUUpRoFU0MAWgWR0CjC7YMOPNndX2UKGgGaAloD0MIcsRafIqnckCUhpRSlGgVS91oFkdAowu8liSaE3V9lChoBmgJaA9DCIenV8ryHnFAlIaUUpRoFU0jAWgWR0CjC8D/2kBTdX2UKGgGaAloD0MIqS9LO7V8ckCUhpRSlGgVS+poFkdAowwHf8/D+HV9lChoBmgJaA9DCI2ACkeQpnFAlIaUUpRoFU0DAWgWR0CjDC94eLeidX2UKGgGaAloD0MI+tSxSul4cUCUhpRSlGgVS95oFkdAowxkUO/cnHV9lChoBmgJaA9DCL+1EyWh8W1AlIaUUpRoFU0FAWgWR0CjDHLPD50sdX2UKGgGaAloD0MI4ExMFyIscECUhpRSlGgVTRIBaBZHQKMMjAckt291fZQoaAZoCWgPQwj/ykqTEp9wQJSGlFKUaBVL5mgWR0CjDPRSgoPTdX2UKGgGaAloD0MIJICbxYstbkCUhpRSlGgVS+toFkdAow0Q9ic5KnV9lChoBmgJaA9DCFNaf0sAc3FAlIaUUpRoFU3nAWgWR0CjDUHfdhy9dX2UKGgGaAloD0MIar5KPjazckCUhpRSlGgVS/VoFkdAow1jd8Aq/nV9lChoBmgJaA9DCNTwLawbw21AlIaUUpRoFUvuaBZHQKMNzJKaodd1fZQoaAZoCWgPQwhxAWiULvNRQJSGlFKUaBVLoWgWR0CjDe4cWCVbdX2UKGgGaAloD0MIY0LMJdWMcUCUhpRSlGgVS/BoFkdAow4EVHnU2HV9lChoBmgJaA9DCLmMmxoo73FAlIaUUpRoFU0PAWgWR0CjDnPxQSBcdX2UKGgGaAloD0MIm3KFd/mvc0CUhpRSlGgVS+hoFkdAow6D0Fr2x3V9lChoBmgJaA9DCGnJ42k58XBAlIaUUpRoFU0DAWgWR0CjDtEG7jDLdX2UKGgGaAloD0MIjWK5pZX1cUCUhpRSlGgVS+NoFkdAow7khHLA6HV9lChoBmgJaA9DCJvmHafoV3JAlIaUUpRoFU0eAWgWR0CjDxR5C4SZdX2UKGgGaAloD0MIqwg3GVVYT0CUhpRSlGgVS6FoFkdAow9UDIRywXV9lChoBmgJaA9DCA1QGmrUmnJAlIaUUpRoFUv2aBZHQKMPWArhBJJ1fZQoaAZoCWgPQwhDcjJxq3dyQJSGlFKUaBVL+mgWR0CjD3GqHXVcdX2UKGgGaAloD0MI8rbSa/PwcECUhpRSlGgVTUcBaBZHQKMPr/4Irvt1fZQoaAZoCWgPQwjFceDVMl1yQJSGlFKUaBVNCgFoFkdAow+73AVO9HV9lChoBmgJaA9DCG6l12ZjyXBAlIaUUpRoFUvnaBZHQKMP1g3Lmp51fZQoaAZoCWgPQwj/zvboDYxwQJSGlFKUaBVL8mgWR0CjD9m/WUbDdX2UKGgGaAloD0MIklhS7r5XbkCUhpRSlGgVTQ0BaBZHQKMQa/Spiqh1fZQoaAZoCWgPQwjesG1RpvlxQJSGlFKUaBVL52gWR0CjEI9kJ8fFdX2UKGgGaAloD0MIAdwsXizmcECUhpRSlGgVS+FoFkdAoxCfZElVtHV9lChoBmgJaA9DCLQ9esO9wXFAlIaUUpRoFUvtaBZHQKMRXpV0cOt1fZQoaAZoCWgPQwjj/bj98qJuQJSGlFKUaBVL82gWR0CjEWJbUwztdX2UKGgGaAloD0MIrn/XZ06Eb0CUhpRSlGgVTRkBaBZHQKMRaWBz3h51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}