End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 1.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,46 +52,53 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate:
|
56 |
- train_batch_size: 64
|
57 |
- eval_batch_size: 64
|
58 |
- seed: 42
|
59 |
- gradient_accumulation_steps: 4
|
60 |
- total_train_batch_size: 256
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
-
- lr_scheduler_type:
|
63 |
-
-
|
64 |
-
- num_epochs: 31
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
| No log | 0.8 | 2 | 2.
|
71 |
-
| No log | 2.0 | 5 |
|
72 |
-
| No log | 2.8 | 7 | 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
| 1.
|
78 |
-
| 1.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
| 0.
|
94 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
|
97 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.5875
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.2119
|
36 |
+
- Accuracy: 0.5875
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
- train_batch_size: 64
|
57 |
- eval_batch_size: 64
|
58 |
- seed: 42
|
59 |
- gradient_accumulation_steps: 4
|
60 |
- total_train_batch_size: 256
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: reduce_lr_on_plateau
|
63 |
+
- num_epochs: 41
|
|
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 0.8 | 2 | 2.0638 | 0.1562 |
|
70 |
+
| No log | 2.0 | 5 | 2.0353 | 0.2 |
|
71 |
+
| No log | 2.8 | 7 | 1.9965 | 0.2687 |
|
72 |
+
| 1.9968 | 4.0 | 10 | 1.9289 | 0.3937 |
|
73 |
+
| 1.9968 | 4.8 | 12 | 1.8942 | 0.3125 |
|
74 |
+
| 1.9968 | 6.0 | 15 | 1.8054 | 0.4562 |
|
75 |
+
| 1.9968 | 6.8 | 17 | 1.7626 | 0.4313 |
|
76 |
+
| 1.7555 | 8.0 | 20 | 1.7078 | 0.4562 |
|
77 |
+
| 1.7555 | 8.8 | 22 | 1.6608 | 0.45 |
|
78 |
+
| 1.7555 | 10.0 | 25 | 1.6121 | 0.425 |
|
79 |
+
| 1.7555 | 10.8 | 27 | 1.5759 | 0.4813 |
|
80 |
+
| 1.5214 | 12.0 | 30 | 1.5340 | 0.4562 |
|
81 |
+
| 1.5214 | 12.8 | 32 | 1.5006 | 0.5062 |
|
82 |
+
| 1.5214 | 14.0 | 35 | 1.4956 | 0.4313 |
|
83 |
+
| 1.5214 | 14.8 | 37 | 1.4418 | 0.5125 |
|
84 |
+
| 1.3342 | 16.0 | 40 | 1.4236 | 0.525 |
|
85 |
+
| 1.3342 | 16.8 | 42 | 1.3784 | 0.55 |
|
86 |
+
| 1.3342 | 18.0 | 45 | 1.4367 | 0.4938 |
|
87 |
+
| 1.3342 | 18.8 | 47 | 1.3665 | 0.525 |
|
88 |
+
| 1.1553 | 20.0 | 50 | 1.3867 | 0.4813 |
|
89 |
+
| 1.1553 | 20.8 | 52 | 1.3536 | 0.5312 |
|
90 |
+
| 1.1553 | 22.0 | 55 | 1.3391 | 0.5125 |
|
91 |
+
| 1.1553 | 22.8 | 57 | 1.2930 | 0.5563 |
|
92 |
+
| 0.9972 | 24.0 | 60 | 1.2894 | 0.5375 |
|
93 |
+
| 0.9972 | 24.8 | 62 | 1.2802 | 0.5625 |
|
94 |
+
| 0.9972 | 26.0 | 65 | 1.2671 | 0.5687 |
|
95 |
+
| 0.9972 | 26.8 | 67 | 1.2491 | 0.5625 |
|
96 |
+
| 0.838 | 28.0 | 70 | 1.2907 | 0.5437 |
|
97 |
+
| 0.838 | 28.8 | 72 | 1.2806 | 0.5563 |
|
98 |
+
| 0.838 | 30.0 | 75 | 1.2228 | 0.5687 |
|
99 |
+
| 0.838 | 30.8 | 77 | 1.2485 | 0.575 |
|
100 |
+
| 0.7226 | 32.0 | 80 | 1.2777 | 0.5437 |
|
101 |
+
| 0.7226 | 32.8 | 82 | 1.2106 | 0.6 |
|
102 |
|
103 |
|
104 |
### Framework versions
|