--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: output_dir results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.575 --- # output_dir This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2775 - Accuracy: 0.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 31 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 2 | 2.0745 | 0.1125 | | No log | 2.0 | 5 | 1.9646 | 0.1875 | | No log | 2.8 | 7 | 1.8686 | 0.325 | | 1.9551 | 4.0 | 10 | 1.7196 | 0.3937 | | 1.9551 | 4.8 | 12 | 1.5011 | 0.4813 | | 1.9551 | 6.0 | 15 | 1.3693 | 0.4938 | | 1.9551 | 6.8 | 17 | 1.4287 | 0.4625 | | 1.3855 | 8.0 | 20 | 1.2961 | 0.5188 | | 1.3855 | 8.8 | 22 | 1.2534 | 0.5312 | | 1.3855 | 10.0 | 25 | 1.2544 | 0.5 | | 1.3855 | 10.8 | 27 | 1.2417 | 0.5437 | | 0.8352 | 12.0 | 30 | 1.1863 | 0.5437 | | 0.8352 | 12.8 | 32 | 1.2524 | 0.5437 | | 0.8352 | 14.0 | 35 | 1.3570 | 0.5062 | | 0.8352 | 14.8 | 37 | 1.3046 | 0.5687 | | 0.4513 | 16.0 | 40 | 1.3582 | 0.4688 | | 0.4513 | 16.8 | 42 | 1.3063 | 0.5625 | | 0.4513 | 18.0 | 45 | 1.3494 | 0.5312 | | 0.4513 | 18.8 | 47 | 1.2484 | 0.5938 | | 0.282 | 20.0 | 50 | 1.3694 | 0.5437 | | 0.282 | 20.8 | 52 | 1.4651 | 0.5375 | | 0.282 | 22.0 | 55 | 1.3577 | 0.5563 | | 0.282 | 22.8 | 57 | 1.2522 | 0.5625 | | 0.2038 | 24.0 | 60 | 1.4027 | 0.5813 | | 0.2038 | 24.8 | 62 | 1.2445 | 0.5938 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3