--- language: - ru - en license: apache-2.0 base_model: gpt2 tags: - not-for-all-audiences - art - humour - jokes - generated_from_keras_callback model-index: - name: zeio/fool results: [] datasets: - zeio/baneks metrics: - loss widget: - text: 'Купил мужик шляпу' example_title: hat - text: 'Пришла бабка к врачу' example_title: doctor - text: 'Нашел мужик подкову' example_title: horseshoe --- # fool This model is a fine-tuned version of [gpt2][gpt2] on the [baneks][baneks] dataset for 1 epoch. It achieved `1.9752` loss during training. Model evaluation has not been performed. ## Model description The model is a fine-tuned variant of the base [gpt2][gpt2] architecture with causal language modeling head. ## Intended uses & limitations The model should be used for studying abilities of natural language models to generate jokes. ## Training and evaluation data The model is trained on a list of anecdotes pulled from a few vk communities (see [baneks][baneks] dataset for more details). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: ```json { 'name': 'AdamWeightDecay', 'learning_rate': { 'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': { 'initial_learning_rate': 5e-05, 'decay_schedule_fn': { 'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': { 'initial_learning_rate': 5e-05, 'decay_steps': 28462, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None }, 'registered_name': None }, 'warmup_steps': 1000, 'power': 1.0, 'name': None }, 'registered_name': 'WarmUp' }, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01 } ``` - training_precision: `mixed_float16` ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.9752 | 0 | ### Framework versions - Transformers 4.35.0.dev0 - TensorFlow 2.14.0 - Datasets 2.12.0 - Tokenizers 0.14.1 [baneks]: https://huggingface.co/datasets/zeio/baneks [gpt2]: https://huggingface.co/gpt2