Update README.md
Browse files
README.md
CHANGED
@@ -25,15 +25,48 @@ It achieves the following results on the evaluation set:
|
|
25 |
|
26 |
## Model description
|
27 |
|
28 |
-
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
```python
|
|
|
31 |
import torch
|
|
|
32 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
outputs = model.generate(**inputs,max_new_tokens=50, pad_token_id = tokenizer.eos_token_id, eos_token_id = tokenizer.eos_token_id)
|
38 |
text = tokenizer.batch_decode(outputs)[0]
|
39 |
print(text)
|
|
|
25 |
|
26 |
## Model description
|
27 |
|
28 |
+
## Sample Code
|
29 |
|
30 |
+
### Test Dataset
|
31 |
+
If you prefer, you can use test dataset from [zelalt/scientific-papers](https://huggingface.co/datasets/zelalt/scientific-papers)
|
32 |
+
or [zelalt/arxiv-papers](https://huggingface.co/datasets/zelalt/arxiv-papers) or read your pdf as text with PyPDF2.PdfReader then give this text to LLM with adding "What is the title of this paper?" prompt.
|
33 |
+
|
34 |
+
```python
|
35 |
+
from datasets import load_dataset
|
36 |
+
|
37 |
+
test_dataset = load_dataset("zelalt/scientific-papers", split='train')
|
38 |
+
test_dataset = test_dataset.rename_column('full_text', 'text')
|
39 |
+
|
40 |
+
def formatting_prompts_func(example):
|
41 |
+
text = f"What is the title of this paper? {example['text'][:180]}\n\nAnswer: "
|
42 |
+
return {'text': text}
|
43 |
+
|
44 |
+
formatted_dataset = test_dataset.map(formatting_prompts_func)
|
45 |
+
```
|
46 |
+
|
47 |
+
### Inference
|
48 |
```python
|
49 |
+
|
50 |
import torch
|
51 |
+
from peft import PeftModel, PeftConfig
|
52 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
53 |
|
54 |
+
peft_model_id = "zelalt/titletor-phi_1-5"
|
55 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True)
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path,trust_remote_code=True)
|
58 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
59 |
+
|
60 |
+
#Put as string
|
61 |
+
inputs = tokenizer(f'''What is the title of this paper? ...[your pdf as text]..\n\nAnswer: ''', return_tensors="pt", return_attention_mask=False)
|
62 |
+
outputs = model.generate(**inputs,max_new_tokens=50, pad_token_id = tokenizer.eos_token_id, eos_token_id = tokenizer.eos_token_id)
|
63 |
+
text = tokenizer.batch_decode(outputs)[0]
|
64 |
+
print(text)
|
65 |
+
```
|
66 |
+
|
67 |
+
```python
|
68 |
+
#Put from dataset
|
69 |
+
inputs = tokenizer(f'''{formatted_dataset['text'][120]}''', return_tensors="pt", return_attention_mask=False)
|
70 |
outputs = model.generate(**inputs,max_new_tokens=50, pad_token_id = tokenizer.eos_token_id, eos_token_id = tokenizer.eos_token_id)
|
71 |
text = tokenizer.batch_decode(outputs)[0]
|
72 |
print(text)
|