---
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: dan lembut, pai yang dibawa pulang menjadi basah di:Karena kulitnya yang tipis
dan lembut, pai yang dibawa pulang menjadi basah di dalam kotaknya.
- text: mungkin untuk mengkritik makanannya tersebut.:Dari makanan pembuka yang kami
makan, dim sum, dan variasi makanannya lainnya, tidak mungkin untuk mengkritik
makanannya tersebut.
- text: di sana untuk Spesial Sabtu Malam Setengah Harga, tetapi Selasa:Saya tidak
ada di sana untuk Spesial Sabtu Malam Setengah Harga, tetapi Selasa Malam.
- text: dan mengatur ulang meja untuk enam orang:Di sebelah kanan saya, nyonya rumah
berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba
membersihkan dan mengatur ulang meja untuk enam orang.
- text: Jika Anda menyukai makanannya dan nilai yang:Jika Anda menyukai makanannya
dan nilai yang Anda dapatkan dari beberapa restoran Chinatown, ini bukan tempat
untuk Anda.
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit Polarity Model
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.6568627450980392
name: Accuracy
---
# SetFit Polarity Model
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
1. Use a spaCy model to select possible aspect span candidates.
2. Use a SetFit model to filter these possible aspect span candidates.
3. **Use this SetFit model to classify the filtered aspect span candidates.**
## Model Details
### Model Description
- **Model Type:** SetFit
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** id_core_news_trf
- **SetFitABSA Aspect Model:** [zeroix07/indo-setfit-absa-model-aspect](https://huggingface.co/zeroix07/indo-setfit-absa-model-aspect)
- **SetFitABSA Polarity Model:** [zeroix07/indo-setfit-absa-model-polarity](https://huggingface.co/zeroix07/indo-setfit-absa-model-polarity)
- **Maximum Sequence Length:** 8192 tokens
- **Number of Classes:** 3 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:--------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| positif |
- 'faktor penebusan adalah makanannya, yang berada:Agar benar-benar adil, satu-satunya faktor penebusan adalah makanannya, yang berada di atas rata-rata, tetapi tidak dapat menutupi semua kekurangan Teodora lainnya.'
- 'makanannya benar-benar luar biasa:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'
- 'biasa, dengan dapur yang sangat mumpuni:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'
|
| netral | - 'itu ada di menu atau tidak.:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'
- 'bisa mencicipi kedua daging tersebut).:Favorit kami yang disepakati adalah orrechiete dengan sosis dan ayam (biasanya para pelayan berbaik hati membagi hidangan menjadi dua sehingga Anda bisa mencicipi kedua daging tersebut).'
- 'jika Anda suka pizza berkulit tipis.:Pizza adalah yang terbaik jika Anda suka pizza berkulit tipis.'
|
| negatif | - 'yang masuk ke koki.:Semua uang digunakan untuk dekorasi interior, tidak ada satupun yang masuk ke koki.'
- 'masuk akal meskipun layanannya buruk.:Harganya masuk akal meskipun layanannya buruk.'
- 'mayones, lupa roti panggang kami, meninggalkan:Mereka tidak memiliki mayones, lupa roti panggang kami, meninggalkan bahan-bahan (yaitu keju dalam telur dadar), di bawah suhu panas dan daging terlalu matang sehingga hancur di piring ketika Anda menyentuhnya.'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.6569 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"zeroix07/indo-setfit-absa-model-aspect",
"zeroix07/indo-setfit-absa-model-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 5 | 21.6519 | 45 |
| Label | Training Sample Count |
|:--------|:----------------------|
| konflik | 0 |
| negatif | 48 |
| netral | 69 |
| positif | 64 |
### Training Hyperparameters
- batch_size: (6, 6)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0003 | 1 | 0.2985 | - |
| 0.0139 | 50 | 0.14 | - |
| 0.0278 | 100 | 0.0913 | - |
| 0.0417 | 150 | 0.0447 | - |
| 0.0556 | 200 | 0.0932 | - |
| 0.0694 | 250 | 0.2864 | - |
| 0.0833 | 300 | 0.2556 | - |
| 0.0972 | 350 | 0.1447 | - |
| 0.1111 | 400 | 0.0084 | - |
| 0.125 | 450 | 0.003 | - |
| 0.1389 | 500 | 0.0035 | - |
| 0.1528 | 550 | 0.0074 | - |
| 0.1667 | 600 | 0.0031 | - |
| 0.1806 | 650 | 0.0014 | - |
| 0.1944 | 700 | 0.002 | - |
| 0.2083 | 750 | 0.0006 | - |
| 0.2222 | 800 | 0.0005 | - |
| 0.2361 | 850 | 0.0005 | - |
| 0.25 | 900 | 0.0005 | - |
| 0.2639 | 950 | 0.0015 | - |
| 0.2778 | 1000 | 0.0007 | - |
| 0.2917 | 1050 | 0.0006 | - |
| 0.3056 | 1100 | 0.0006 | - |
| 0.3194 | 1150 | 0.0007 | - |
| 0.3333 | 1200 | 0.0091 | - |
| 0.3472 | 1250 | 0.0004 | - |
| 0.3611 | 1300 | 0.0003 | - |
| 0.375 | 1350 | 0.0005 | - |
| 0.3889 | 1400 | 0.0006 | - |
| 0.4028 | 1450 | 0.0434 | - |
| 0.4167 | 1500 | 0.0006 | - |
| 0.4306 | 1550 | 0.0003 | - |
| 0.4444 | 1600 | 0.0005 | - |
| 0.4583 | 1650 | 0.0004 | - |
| 0.4722 | 1700 | 0.0021 | - |
| 0.4861 | 1750 | 0.0012 | - |
| 0.5 | 1800 | 0.0004 | - |
| 0.5139 | 1850 | 0.0005 | - |
| 0.5278 | 1900 | 0.0004 | - |
| 0.5417 | 1950 | 0.0003 | - |
| 0.5556 | 2000 | 0.0003 | - |
| 0.5694 | 2050 | 0.0005 | - |
| 0.5833 | 2100 | 0.0004 | - |
| 0.5972 | 2150 | 0.0004 | - |
| 0.6111 | 2200 | 0.0005 | - |
| 0.625 | 2250 | 0.0004 | - |
| 0.6389 | 2300 | 0.0005 | - |
| 0.6528 | 2350 | 0.0004 | - |
| 0.6667 | 2400 | 0.0003 | - |
| 0.6806 | 2450 | 0.0004 | - |
| 0.6944 | 2500 | 0.0007 | - |
| 0.7083 | 2550 | 0.0003 | - |
| 0.7222 | 2600 | 0.0003 | - |
| 0.7361 | 2650 | 0.101 | - |
| 0.75 | 2700 | 0.0003 | - |
| 0.7639 | 2750 | 0.0004 | - |
| 0.7778 | 2800 | 0.0004 | - |
| 0.7917 | 2850 | 0.0003 | - |
| 0.8056 | 2900 | 0.0004 | - |
| 0.8194 | 2950 | 0.0899 | - |
| 0.8333 | 3000 | 0.0003 | - |
| 0.8472 | 3050 | 0.0002 | - |
| 0.8611 | 3100 | 0.0002 | - |
| 0.875 | 3150 | 0.0003 | - |
| 0.8889 | 3200 | 0.0002 | - |
| 0.9028 | 3250 | 0.0003 | - |
| 0.9167 | 3300 | 0.0004 | - |
| 0.9306 | 3350 | 0.0003 | - |
| 0.9444 | 3400 | 0.0003 | - |
| 0.9583 | 3450 | 0.0547 | - |
| 0.9722 | 3500 | 0.0003 | - |
| 0.9861 | 3550 | 0.0004 | - |
| 1.0 | 3600 | 0.0002 | - |
### Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- spaCy: 3.7.4
- Transformers: 4.36.2
- PyTorch: 2.1.2
- Datasets: 2.18.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```