File size: 2,758 Bytes
9107f84
3b10cb4
 
9107f84
3b10cb4
 
9107f84
3b10cb4
 
 
 
 
fbba993
3b10cb4
 
 
4ab447d
 
 
 
3b10cb4
 
 
f6d7b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b10cb4
32cdd04
 
3b10cb4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
tags:
- sparse sparsity quantized onnx embeddings int8
license: mit
language:
- en
---

# gte-base-quant

This is the quantized (INT8) ONNX variant of the [gte-base](https://huggingface.co/thenlper/gte-base) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization.

Current list of sparse and quantized gte ONNX models:

| Links                                                                                               | Sparsification Method |
| --------------------------------------------------------------------------------------------------- | ---------------------- |
| [zeroshot/gte-large-sparse](https://huggingface.co/zeroshot/gte-large-sparse)     |    Quantization (INT8) & 50% Pruning                    |
| [zeroshot/gte-large-quant](https://huggingface.co/zeroshot/gte-large-quant)     |   Quantization (INT8)                     |
| [zeroshot/gte-base-sparse](https://huggingface.co/zeroshot/gte-base-sparse)     |    Quantization (INT8) & 50% Pruning                    |
| [zeroshot/gte-base-quant](https://huggingface.co/zeroshot/gte-base-quant)     |   Quantization (INT8)                     |
| [zeroshot/gte-small-sparse](https://huggingface.co/zeroshot/gte-small-sparse)     |    Quantization (INT8) & 50% Pruning                    |
| [zeroshot/gte-small-quant](https://huggingface.co/zeroshot/gte-small-quant)     |   Quantization (INT8)                     |

```bash
pip install -U deepsparse-nightly[sentence_transformers]
```

```python
from deepsparse.sentence_transformers import SentenceTransformer
model = SentenceTransformer('zeroshot/gte-base-quant', export=False)

# Our sentences we like to encode
sentences = ['This framework generates embeddings for each input sentence',
    'Sentences are passed as a list of string.',
    'The quick brown fox jumps over the lazy dog.']

# Sentences are encoded by calling model.encode()
embeddings = model.encode(sentences)

# Print the embeddings
for sentence, embedding in zip(sentences, embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding.shape)
    print("")
```

For further details regarding DeepSparse & Sentence Transformers integration, refer to the [DeepSparse README](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/sentence_transformers).

For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).

![;)](https://media.giphy.com/media/bYg33GbNbNIVzSrr84/giphy-downsized-large.gif)