File size: 2,758 Bytes
9107f84 3b10cb4 9107f84 3b10cb4 9107f84 3b10cb4 fbba993 3b10cb4 4ab447d 3b10cb4 f6d7b85 3b10cb4 32cdd04 3b10cb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
tags:
- sparse sparsity quantized onnx embeddings int8
license: mit
language:
- en
---
# gte-base-quant
This is the quantized (INT8) ONNX variant of the [gte-base](https://huggingface.co/thenlper/gte-base) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization.
Current list of sparse and quantized gte ONNX models:
| Links | Sparsification Method |
| --------------------------------------------------------------------------------------------------- | ---------------------- |
| [zeroshot/gte-large-sparse](https://huggingface.co/zeroshot/gte-large-sparse) | Quantization (INT8) & 50% Pruning |
| [zeroshot/gte-large-quant](https://huggingface.co/zeroshot/gte-large-quant) | Quantization (INT8) |
| [zeroshot/gte-base-sparse](https://huggingface.co/zeroshot/gte-base-sparse) | Quantization (INT8) & 50% Pruning |
| [zeroshot/gte-base-quant](https://huggingface.co/zeroshot/gte-base-quant) | Quantization (INT8) |
| [zeroshot/gte-small-sparse](https://huggingface.co/zeroshot/gte-small-sparse) | Quantization (INT8) & 50% Pruning |
| [zeroshot/gte-small-quant](https://huggingface.co/zeroshot/gte-small-quant) | Quantization (INT8) |
```bash
pip install -U deepsparse-nightly[sentence_transformers]
```
```python
from deepsparse.sentence_transformers import SentenceTransformer
model = SentenceTransformer('zeroshot/gte-base-quant', export=False)
# Our sentences we like to encode
sentences = ['This framework generates embeddings for each input sentence',
'Sentences are passed as a list of string.',
'The quick brown fox jumps over the lazy dog.']
# Sentences are encoded by calling model.encode()
embeddings = model.encode(sentences)
# Print the embeddings
for sentence, embedding in zip(sentences, embeddings):
print("Sentence:", sentence)
print("Embedding:", embedding.shape)
print("")
```
For further details regarding DeepSparse & Sentence Transformers integration, refer to the [DeepSparse README](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/sentence_transformers).
For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).
![;)](https://media.giphy.com/media/bYg33GbNbNIVzSrr84/giphy-downsized-large.gif)
|