zesquirrelnator
commited on
Commit
•
5d906c8
1
Parent(s):
d7456e8
Update handler.py
Browse files- handler.py +51 -42
handler.py
CHANGED
@@ -1,47 +1,56 @@
|
|
1 |
-
import
|
2 |
-
from typing import Dict, Any
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
-
import base64
|
6 |
from io import BytesIO
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
if not encoded_images:
|
25 |
-
return {"captions": [], "error": "No images provided"}
|
26 |
-
|
27 |
-
texts = input_data.get("texts", ["move to red ball"] * len(encoded_images))
|
28 |
-
|
29 |
-
try:
|
30 |
-
raw_images = [Image.open(BytesIO(base64.b64decode(img))).convert("RGB") for img in encoded_images]
|
31 |
-
processed_inputs = [
|
32 |
-
self.processor(image, text, return_tensors="pt") for image, text in zip(raw_images, texts)
|
33 |
-
]
|
34 |
-
processed_inputs = {
|
35 |
-
"pixel_values": torch.cat([inp["pixel_values"] for inp in processed_inputs], dim=0).to(device),
|
36 |
-
"input_ids": torch.cat([inp["input_ids"] for inp in processed_inputs], dim=0).to(device),
|
37 |
-
"attention_mask": torch.cat([inp["attention_mask"] for inp in processed_inputs], dim=0).to(device)
|
38 |
-
}
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
2 |
from PIL import Image
|
3 |
import torch
|
|
|
4 |
from io import BytesIO
|
5 |
+
import base64
|
6 |
+
|
7 |
+
# Initialize the model and tokenizer
|
8 |
+
model_id = "HuggingFaceM4/idefics2-8b"
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
+
|
12 |
+
# Check if CUDA (GPU support) is available and then set the device to GPU or CPU
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
model.to(device)
|
15 |
+
|
16 |
+
def preprocess_image(encoded_image):
|
17 |
+
"""Decode and preprocess the input image."""
|
18 |
+
decoded_image = base64.b64decode(encoded_image)
|
19 |
+
img = Image.open(BytesIO(decoded_image)).convert("RGB")
|
20 |
+
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
def handler(event, context):
|
23 |
+
"""Handle the incoming request."""
|
24 |
+
try:
|
25 |
+
# Extract the base64-encoded image and question from the event
|
26 |
+
input_image = event['body']['image']
|
27 |
+
question = event['body'].get('question', "What is this image about?")
|
28 |
|
29 |
+
# Preprocess the image
|
30 |
+
img = preprocess_image(input_image)
|
31 |
+
|
32 |
+
# Perform inference
|
33 |
+
enc_image = model.encode_image(img).to(device)
|
34 |
+
answer = model.answer_question(enc_image, question, tokenizer)
|
35 |
+
|
36 |
+
# If the output is a tensor, move it back to CPU and convert to list
|
37 |
+
if isinstance(answer, torch.Tensor):
|
38 |
+
answer = answer.cpu().numpy().tolist()
|
39 |
+
|
40 |
+
# Create the response
|
41 |
+
response = {
|
42 |
+
"statusCode": 200,
|
43 |
+
"body": {
|
44 |
+
"answer": answer
|
45 |
+
}
|
46 |
+
}
|
47 |
+
return response
|
48 |
+
except Exception as e:
|
49 |
+
# Handle any errors
|
50 |
+
response = {
|
51 |
+
"statusCode": 500,
|
52 |
+
"body": {
|
53 |
+
"error": str(e)
|
54 |
+
}
|
55 |
+
}
|
56 |
+
return response
|